Mathematics
 Curriculum Intent

Contents

Introduction	Page 3
Knowledge progression overview	Page 6
Foundation stage progression	Page 85
Arithmetic progression	Page 87
Vocabulary progression	Page 105

Introduction

Introduction

This document outlines the knowledge, skills and strategies that should be taught in Mathematics. It includes:

- A knowledge progression document to show key declarative knowledge children should learn throughout their education at Sheep Dip Lane Academy
- Foundation stage knowledge and skills yearly overview
- Arithmetic progression document
- Progression of vocabulary throughout each area of Mathematics

Other documents to support include:

- A calculation policy that outlines the procedural and conditional knowledge should learn throughout their education at Sheep Dip Lane Academy.
- Key Performance Indicators document which outlines the knowledge children should learn as matched to the National curriculum and Ready-To-Progress criteria
- Foundation stage yearly progression document

It is influenced by documents and research, including:
National curriculum in England: mathematics programmes of study - GOV.UK (www.gov.uk)

Teaching mathematics in primary schools - GOV.UK (www.gov.uk)

Research review series: mathematics - GOV.UK (www.gov.uk)

Intent

Our intent in Mathematics is to provide a sound foundation for the development of mathematics skills throughout school with depth of learning through the use of White Rose Maths scheme of learning. This includes showing pupils how the different areas of Maths are interconnected, linked to real life and allow them to explore these links fully.

We recognise that a good mathematician needs fluency and automaticity in number work which is achieved through varied and frequent practice including - but not limited to - place value/number facts, times tables, calculation skill and the ability to apply these quickly and accurately

They also require the ability to apply these skills in reasoning and problem solving tasks which become increasingly progressive as children move through the academy. Children need the skills to break down these problems into small steps and persevere in seeking solutions.

At Sheep Dip Lane Academy, we recognise that all learners can achieve and we expect all learners to move through the curriculum at roughly the same pace. Children who grasp concepts quickly should be challenged in their learning, not through acceleration through content, but by broadening their experiences and deepening
their understanding with problem-solving tasks and application. Children who are yet to be fully confident with a concept must first secure their understanding through additional practise before moving on. They may require concrete models or same day intervention to build confidence with mathematical concepts.
Inclusion is at the heart of our Mathematics teaching and all children are given the support and opportunities they need to thrive in this subject and grant them the necessary skills and knowledge to be successful in later life.

Knowledge is taught through the three key knowledge strands:

Content categories	Type I	Type II
Declarative	Facts, formulae	Knowledge of reatatonshios between facts/concepts
Procedural	Methods, algorithms	Knowledge of relationsthips between facts, mechanisms
Conditional	Strategies (PK +DK$)$	Knowledge of relationshios between known information, strategy choices and unknown information/reasoning

- Declarative knowledge is the knowing of this or that, e.g. knowing double 5 is 10 or 2 and 8 is a number bond that is equal to 10 .
- Procedural knowledge is the knowing how to do things or the steps/strategies involved in how to do things, e.g. the steps involved in multiplying mixed numbers or the best ways to make a tuna sandwich.
- Conditional knowledge involves knowing the when and the why to apply the other two types of knowledge, e.g. readers skim newspapers to get the gist, but apply close reading to literature or difficult texts to develop deeper understandings.

At Sheep Dip Lane Academy, we adapt and enrich maths to ensure our high quality maths curriculum details the core facts, concepts, methods and strategies that give pupils the best chance of developing proficiency in the subject. To be able to develop this proficiency we nurture the different types of knowledge and aim to have mathematicians that are able to explain what they know, how they use it and when they use it.

Implementation

Our staff implement this through following the White Rose Maths curriculum, supported by carefully chosen additional resources including NCETM, Classroom Secrets, Reflex, Mathletics and Times Table Rockstars. Staff focus on quality first teaching and having the highest expectations of all learners. This is achieved through a
progression of understanding from concrete to pictorial and, finally, abstract thinking. Mathematical concepts are introduced using concrete apparatus (manipulatives) and pictures to allow all learners to fully grasp key learning points of those concepts. Only when children are confident using manipulatives and pictorial representations do they move to the abstract way of working. This allows for fluid differentiation in classes where all learners can work on the same learning but use different methods to complete it.
Children are assessed regularly in lessons to adapt support and at summative termly points throughout their time at Sheep Dip Lane. This allows for any gaps to be filled swiftly through same day interventions. This ensures that all children have their needs met for the mathematics curriculum.

Impact

The impact of our mathematics curriculum is that children understand the relevance and importance of what they are learning in relation to real world concepts. Children have a positive view of maths due to learning in an environment where maths is promoted as being an exciting and enjoyable subject in which they can investigate and ask questions; they know that it is reasonable to make mistakes because this can strengthen their learning through the journey to finding an answer. Children are confident to 'have a go' and choose the equipment they need to help them to learn along with the strategies they think are best suited to each problem. Our children have a good understanding of their strengths and targets for development in maths and what they need to do to improve. Our maths books evidence work of a high standard of which children clearly take pride; the components of the teaching sequences demonstrate good coverage of fluency, reasoning and problem solving. Our feedback and interventions support children to strive to be the best mathematicians they can be, ensuring a high proportion of children are on track or above.

Our pupils will have:

- Become fluent, competent and efficient mathematicians.
- The ability to recall facts and procedures, including the recollection of times tables.
- The ability to recognise relationships and make connections in maths.
- The ability to clearly explain their reasoning and justify their thought processes.
- The flexibility to move between different contexts and representations of maths.
- High aspirations, which will see hem through to further study, work and a successful adult life.

Mathematics - Knowledge progression

Progression overview

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Number, Counting and Place Value	Have a deep understanding of number to 10 , including the composition of each number Subitise (recognise quantities without counting) up to 5 Verbally count beyond 20 , recognising the pattern of the counting system Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity Explore and represent patterns within numbers up to 10 , including evens and odds odds		$*$ count in stepspof 2,3, and 5 from 0 and in tens from any number, forward and backward * recognise the place value of each higit in a two-digit number (tens, ones) - iden ${ }_{-}^{*}$ identify, represent and estimate numbers using different representations, including the number line * compare and order numbers from 0 up to 100; use and $=$ signs * read and write numbers to at least 100 in numerals and in words * use place value and number facts to solve problems.	\star count from 0 in multiples of $4,8,50$ and $100 ;$ find 10 or 100 more or less than a given number $\stackrel{*}{*}$ recognise the place value of each digit in a three-digit number (hundreds, tens, ones) $*$ compare and order numbers up to 1000 *identify, represent and estimate numbers using different representations - read and write numbers up to 1000 in numerals and in words - solve number problems and practical problems involving these ideas.	* count in multiples of 6,7, 9, 25 and 1000 than a given number * count backwards through zero to include negative numbers - recognise the place value number (thousands, hundreds, tens, and ones) * order and compare numbers beyond 1000 $\dot{\text { id }}$ identify, represent and estimate numbers using different representations * round any number to the nearest 10,100 or 1000 * solve number and practical problems that involve all of the above and with increasingly large - positive numbers 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and the concept of zero and place value.	* read, write, order and compare numbers to at - east 1000000 and digit digit - count forwards or backwards in steps powers of 10 for any given number up to 1000000 numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero - round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000 - solve number problems and practical problems that involve all of the above $*$ read Roman numerals to $1000(M)$ and recognise years written in Roman numerals.	* read, write, order and compare numbers up to 10 000000 and determine the value of each digit * round any whole number to a required degree of accuracy * use negative numbers in context, and calculate intervals across zero * solve number and involve all of the above.
Addition and Subtraction	Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (inclu sing subtraction facts) and some number bonds to 10 , including double facts.	* read, write and interpret mathematical statement involving addition $(+)$ subtraction (-) and equals (=) signs * represent and use subtraction fand related * add and subtract onedigit and two-digit numbers to 20, including zero * solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$.	Solve problems with addition and subtraction: and pictorial representations, including those involving numbers, * applying their increasing knowledge of mental and written methods * recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Add and subtract numbers using concrete objects, pictorial representations, and mentally, including:	Add and subtract numbers mentally, including: \therefore a three-digit number and - a three-digit number and * a three-digit number and hundreds * add and subtract numbers with up to three digits, using formal written addition and subtraction * estimate the answer to a calculation and use inverse operations to check answers * solve problems, including missing number problems, using number facts, place		* add and subtract whole numbers with more tign digits, including using formal written methods (columnar addition and subtraction) *. add and subtract numbers mentally with increasingly large numbers answers to calculations and determine, in the context of a problem, levels of accuracy - solve addition and subtraction multi-step problems in contexts, deciding which operations	* perform mental calculations, including with mixed operations and large numbers * use their knowledge of the order of operations to carry out calculations involving the four operations * solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and \rightarrow * solve problems involving addition, subtraction, multiplication and divis multiplication and division

			* a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers * show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	value, and more complex addition and subtraction.		and methods to use and why.	* use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Multiplication and Division	Understand double facts and how quantities can be distributed equally.	* solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.	* recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers * calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs - show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot *. solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	* recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables - write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods * solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	* recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations * multiply two-digit and three-digit numbers by a one-digit number using formal written layout * solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.	*. identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers * know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers * multiply and divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context * multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000	* multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication * divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context * divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context * perform mental calculations, including with mixed operations and large numbers - identify common factors, common multiples and prime numbers - use their knowledge of the order of operations to carry out calculations involving the four operations * solve problems involving addition, subtraction, multiplication and division * use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Fractions	Children are not explicitly taught fractions in the early	* recognise, find and name a half as one of two equal	* recognise, find, name and write fractions $1 / 3,1 / 4$,	* recognise, find and write fractions of a discrete set of	* recognise and show, using diagrams, families of	* compare and order fractions whose	* use common factors to simplify fractions; use

	years but when exploring capacity, they refer to things being half full, full, empty and nearly empty which is a pre-fraction skill as it is building understanding of wholes and halves.	parts of an object, shape or quantity * recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	2/4 and $3 / 4$ of a length, shape, set of objects or quantity * write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	objects: unit fractions and non-unit fractions with small denominators - recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators * recognise and show, using diagrams, equivalent fractions with small denominators * add and subtract fractions with the same denominator within one whole [for example, $5 / 7+1 / 7=6 / 7]$ - compare and order unit fractions, and fractions with the same denominators - solve problems that involve all of the above.	common equivalent fractions * solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including nonunit fractions where the answer is a whole number * add and subtract fractions with the same denominator - recognise and write decimal equivalents of any number of tenths or hundredths * recognise and write decimal equivalents to $1 / 4$, $1 / 2$ and $3 / 4$ * solve simple measure and money problems involving fractions and decimals to two decimal places.	denominators are all multiples of the same number * identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths - recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $2 / 5+4 / 5=6 / 5=$ $11 / 5$] * add and subtract fractions with the same denominator and denominators that are multiples of the same number * multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams * read and write decimal numbers as fractions [for example, $0.71=71 / 100]$ * solve problems which require knowing percentage and decimal equivalents of $1 / 2 \quad 1 / 41 / 5,2 / 54 / 5$ and those fractions with a denominator of a multiple of 10 or 25.	common multiples to express fractions in the same denomination * compare and order fractions, including fractions > 1 * add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions * multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=$ 1/8] - divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6]$ * associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8]
Decimals and percentages				* count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10	* count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. - recognise and write decimal equivalents to $1 / 41 / 2$ and $3 / 4$ * find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths * round decimals with one decimal place to the nearest whole number * compare numbers with the same number of decimal places up to two decimal places	* multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000 * read and write decimal numbers as fractions [for example, $0.71=71 / 100]$ * recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents * round decimals with two decimal places to the nearest whole number and to one decimal place * read, write, order and compare numbers with up to three decimal places * solve problems involving number up to three decimal places * recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write	* associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, $3 / 8$] * identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places - multiply one-digit numbers with up to two decimal places by whole numbers * use written division methods in cases where the answer has up to two decimal places * solve problems which require answers to be rounded to specified degrees of accuracy

						percentages as a fraction with denominator 100, and as a decimal * solve problems which require knowing percentage and decimal equivalents of $1 / 21 / 41 / 5,2 / 54 / 5$ and those fractions with a denominator of a multiple of 10 or 25.	* recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. * solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
Shape and patterns	Copy, continue and create their own simple repeating patterns with at least three full units of repeat. $A B$, ABB, AABB, AAB, AABBB Including a range of shapes, colours and sizes Recall names for 2 D shapes Recall some names for 3D shapes Explore which 3D shapes stack and roll	Recognise and name common 2-D and 3-D shapes, including: * 2-D shapes [for example, rectangles (including squares), circles and triangles] * 3-D shapes [for example, cuboids (including cubes), pyramids and spheres].	* identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line - identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces * identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] - compare and sort common 2-D and 3-D shapes and everyday objects.	* draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them * identify horizontal and vertical lines and pairs of perpendicular and parallel lines.	* compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - identify lines of symmetry in 2-D shapes presented in different orientations - complete a simple symmetric figure with respect to a specific line of symmetry.	*) identify 3-D shapes, including cubes and other cuboids, from 2-D representations - use the properties of rectangles to deduce related facts and find missing lengths and angles * distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	* draw 2-D shapes using given dimensions and angles * recognise, describe and build simple 3-D shapes, including making nets * compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons * illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
Angles				* recognise angles as a property of shape or a description of a turn * identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	* identify acute and obtuse angles and compare and order angles up to two right angles by size	* know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles * draw given angles, and measure them in degrees (0) identify: * angles at a point and one whole turn (total 360 o) * angles at a point on a straight line and 21 a turn (total 1800) - other multiples of 900	* draw 2-D shapes using given dimensions and angles * recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
Position and direction	Respond to positional language in practical situations e.g. when tidying up, put the blocks next to the beads. Begin to use positional language to describe where things are in relation to each other	Describe position, direction and movement, including whole, half, quarter and three-quarter turns.	* order and arrange combinations of mathematical objects in patterns and sequences - use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anti-clockwise).	* recognise angles as a property of shape or a description of a turn	* describe positions on a 2D grid as coordinates in the first quadrant - describe movements between positions as translations of a given unit to the left/right and up/down * plot specified points and draw sides to complete a given polygon	* identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	* describe positions on the full coordinate grid (all four quadrants) * draw and translate simple shapes on the coordinate plane, and reflect them in the axes.

Money	Money is not explicitly taught in EYFS but children will still explore coins within provision to familiarise the concept of money being used to pay for things. Children may count 1 p coins but not others as they are still learning to understand the concept of unitising.	* recognise and know the value of different denominations of coins and notes	* recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value * find different combinations of coins that equal the same amounts of money * solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	* add and subtract amounts of money to give change, using both $£$ and p in practical contexts	* estimate, compare and calculate different measures, including money in pounds and pence	* use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.	
Measurement	Compare and order objects by size and mass and describe using mathematical language Sort objects based on their size and mass Use balance scales to explore mass Apply their understanding of language into practical tasks e.g. build a taller tower Explore basic capacity practically e.g. how many scoops of sand will this container hold; how many cups of water will this bucket hold Measure using nonstandard units of measure e.g. 3 hands long	Compare, describe and solve practical problems for: * lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] - mass/weight [for example, heavy/light, heavier than, lighter than] - capacity and volume [for example, full/empty, more than, less than, half, half full, quarter] - time [for example, quicker, slower, earlier, later] Measure and begin to record the following: - lengths and heights - mass/weight - capacity and volume - time (hours, minutes, seconds)	* choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels - compare and order lengths, mass, volume/capacity and record the results using >, < and =	* measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity ($/ / \mathrm{ml}$)	* Convert between different units of measure [for example, kilometre to metre; hour to minute] * estimate, compare and calculate different measures, including money in pounds and pence	* convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) * understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints * use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.	* solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate * use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places * convert between miles and kilometres
Time	Order key events in daily routines Use language to describe when events happen - day, night, morning, afternoon, before, after, today, tomorrow, now, next, later Informally measure time e.g. how many jumps can I do before the sand timer runs out or use a calendar to count down how many days until an event	- sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] * recognise and use language relating to dates, including days of the week, weeks, months and years - tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	* compare and sequence intervals of time * tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times * know the number of minutes in an hour and the number of hours in a day.	* tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks * estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight - know the number of seconds in a minute and the number of days in each month, year and leap year - compare durations of events [for example to	* read, write and convert time between analogue and digital 12- and 24-hour clocks * solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	* solve problems involving converting between units of time	use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice versa,

				calculate the time taken by particular events or tasks].			
Area, perimeter and volume				\pm measure the perimeter of simple 2-D shapes	- measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres - find the area of rectilinear shapes by counting squares	- measure and calculate rectilinear shapes in centimetres and metres * calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres (m 2) and estimate the area of irregular shapes - estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water]	
Statistics			* interpret and construct simple pictograms, tally charts, block diagrams and simple tables - ask and questions by counting the number of objects in each category and sorting the categories by quantity * ask and answer questions about totalling and comparing categorical data.	* interpret and present data using bar charts, pictograms and tables * solve one-step and twostep questions [for example, How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. \& solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	* solve comparison, sum and difference problems using information presented in a line graph - complete, read and interpret information in tables, including timetables.	* interpret and construct pie charts and line graphs and use these to solve problems * calculate and interpret the mean as an average.
Ratio					integer scaling problems and harder correspondence problems such as n objects are connected to m objects.	use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.	\& solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts 幺 solve problems involving the calculation of percentages [for example, of measures. and such as 15\% of 360] and the use of percentages for comparison 幺 solve problems involving similar shapes where the scale factor is known or can be found \& solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
Algebra							- use simple formulae - generate and describe linear number sequences \pm express missing number - find pairs of numbers that satisfy an equation with two unknowns

\square
\pm enumerate possibilities of
combinations of two
combinations of two
variables.

Number, Counting and Place Value

Progression of
Knowledge

This is the fundamental area of mathematics. It is essential that children leave each year group having acquired a firm understanding of the knowledge and procedures linked to number, counting and place value to enable them to progress throughout the curriculum as numbers become larger and concepts from other areas of Maths are applied to increasingly larger numbers. This is why this strand is always covered at the outset of a year as it is the foundation of all learning. The only exception being EYFS and Year 1 where children study number, counting and place value regularly throughout the year so that deep early number experiences are prioritised. Early number sense is essential here and the counting skills developed in EYFS are crucial for mastering an understanding of number.

	More than＝greater Less than＝fewer		
Year 2	A number can be split into tens and ones Ten ones $=$ one ten To write numbers in words，we need to know the numbers to 20 and： We can then put them together e．g seventy－nine Counting in $2 s-2,4,6,8,10,12,14,16,18,20,22,24$ Counting in $3 s-3,6,9,12,15,18,21,24,27,30,33,36$ Counting in $5 \mathrm{~s}-5,10,15,20,25,30,35,40,45,50,55,60$ Counting on in tens from a number－keep adding one to the tens column e．g． $23,33,43,53,63$ Counting back in tens from a number－keep subtracting one to the tens column $\text { e.g. } 85,75,65,55,45$ $>$ greater than ＜less than ＝equal to Numbers with the greatest number of tens are bigger If they have the same number of tens，we look to the ones	Count in steps of 2，3，and 5 from 0 read and write numbers to at least 100 in numerals and in words count in tens from any number，forward and backward recognise the place value of each digit in a two－digit number（tens，ones） identify，represent and estimate numbers using different representations，including the number line use＜＞and＝signs to compare numbers up to 100 order numbers from 0 up to 100	Use place value and number facts to solve problems． Max labels an odd number on the number line． He spills some paint over his number． What could Max＇s number be？ Jo needs 72 candles． How many more candles does Jo need？
Year 3	Ten tens＝one hundred 3 digit numbers have hundreds，tens and ones	Count from 0 in multiples of 4，8， 50 and 100 read and write numbers up to 1000 in numerals and in words	Solve number problems and practical problems involving these ideas．

	To write big hundred in fro Multiples Multiples of Multiples of Multiples of Adding and Identify the It may lead 9 in the colu When comp chart. The greate If they have on.	ger numb front of it of 4 - 4, of $8-8$, f $50-50$ of 100 - subtractin tens or to surrou unn paring and r the num the sam	rs, we e.g. fou , 12, 16 6, 24, , 100, 00, 200 10 or undre ding c d orde ber of amoun	dreds, 2 tens and 5 ones $20+5=425$ the numbers to hundred and put \qquad ndred and twenty-five $\begin{aligned} & 0,24,28,32,36,40,44,48 \\ & 40,48,56,64,72,80,88,96 \\ & 200,250,300,350,400 . . \\ & 00,400,500 \ldots \end{aligned}$ from a number can be done mentally column and adjust this ns needing to change if there is a 0 or numbers, we can use a place value dreds, the greater the number. hundreds, we look to the tens and so	Find 10 number Recogn a three ones) Compar Order n identify, using di \square	100 more or less than a given the place value of each digit in t number (hundreds, tens, umbers up to 1000 bers up to 1000 present and estimate numbers ent representations \qquad	Each number has the same digit missing. $-56<7-3<75-$ What could the missing digits be?
Year 4	Multiples Multiples Multiples Multiples Multiples The thousa ten times bi Ten hundreds	of 6 - 6 , of 7 - 7 , of $9-9$, of $25-25$ of 1000 nds colu gger ds $=$ one Hundreds 6	2, 18, 4, 21, 8, 27, , 50, 7 1000, co thous Tens	$\begin{aligned} & 30,36,42,48,54,60,66,72 \\ & 35,42,49,56,63,70,77,84 \\ & 45,54,63,72,81,90,99108 \\ & 30,125,150,175,200,225 \ldots \\ & 0,3000,4000,5000 \ldots \end{aligned}$ before the hundreds column - it is	Count Find 10 number column Count back negative Determ digit nu Compar	Itiples of $6,7,9,25$ and 1000 ore or less than a given adjusting the thousands wards through 0 to include mbers he value of each digit in a 4and partition mbers with 4 digits	solve number and practical problems that involve all of the above and with increasingly large positive numbers There are 2,458 children in a school. a) Round the number of children to the nearest 10

6631
We can partition numbers in different ways

We use a comma after the thousands - these are used to help with reading and writing longer numbers

6,631

Six-thousand, three-hundred and thirty-one
Adding and subtracting 1000 from a number can be done mentally Identify the thousands column and adjust this
It may lead to surrounding columns needing to change if there is a 0 or 9 in the thousands column
We can count backwards past zero into negative numbers

When rounding numbers, we decide which multiple it is closest to
To the nearest ten - the multiple of 10 that it is closest to
To the nearest hundred - the multiple of 100 that it is closest to
To the nearest thousand - the multiple of 1000 that it is closest to
01234 - rounds down to the multiple before
56789 - rounds up to the multiple after
Roman numerals were used in the past for numbers.
Over time, the numeral system changed to include the concept of zero and place value.
The Roman system does not have a zero or place holders.
It uses letters to represent numbers

Order sets of numbers with 4 digits

mountain	Height (m)	Write the names of the mountains in order starti with the highest.	
Mount Ebrus	$5,642$		
Klimaniaro			
Aconcegua	6,962		
Mont Blane			
Mount terest			
/ Thousands	Hundreds	Tens	Ones
5	6	4	2
5	8	9	5
6	9	6	2
4	8	1	0
8	8	4	

Round any number to the nearest 10, 100 or 1000

Read Roman numerals to 100 (I to C)

Teddy and Scott have some digit cards.

Teddy makes the number 4,571
Scott says his number is greater than Teddy's. Teddy says Scott's number must start with a 5

Is Teddy correct? \qquad -
hundreds, 3 tens and 1 one
$6000+600+30+1=$

Addition and Subtraction

Progression of Knowledge

Once children are secure with numbers and counting, they move towards addition. Once secure with addition, they will progress towards subtracting, noting the links between the two operations through use of consistent visual representations such as part-whole models and bar models.
Children learn the concept of addition and subtraction in the Early Years along with key facts, bonds and double facts. This extends in Year 1 so that children can confidently recall all addition and subtraction facts needed to formalise methods in Key Stage 2. Formal written methods are learnt to automaticity throughout Key Stage 2 as children apply these methods to bigger numbers, decimals and mixed operations.
At all stages, it is important that emphasis and thought is given to which calculations would be better done mentally and which would be more efficient with a method.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
EYFS	We combine groups to make a total The quantity of a group can be changed by adding more The quantity of a group can be changed by taking away Addition facts within 5 Including related subtraction facts e.g 5-2 Number bonds to 10 Including related subtraction facts	Combine two groups to find a total in many contexts using real objects (encourage to subitise for the groups) Reduce a group by taking away	Solve simple one-step problems that involve addition and subtraction, using concrete objects and in familiar and known contexts e.g 3 people are on the bus and 2 more get on. Represent number stories using ten frames
Year 1	The + symbol - plus, add The - symbol - subtract, take away The = symbol - equals, is equal to Addition facts to 10 fluently including related subtraction facts	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs represent and use number bonds and related subtraction facts within 20	Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? 9.

	$8-3=5$ $18-3=15$ Partitioning the number that we are subtracting using our addition facts Finding the difference $=$ subtract the smallest number from the biggest number Fact families If we know an addition fact, we also know other related facts		
Year 2	Addition and subtraction facts to 20 We can use addition facts to find out other related facts with fact families $\begin{aligned} & 3+15=18 \\ & 15+3=18 \\ & 18-3=15 \\ & 18-15=3 \end{aligned}$ We can use number bonds to work out bigger numbers e.g. $3+5=8,3$ tens +5 tens $=8$ tens, $30+50=80$	Use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers compare calculations	Solve problems with addition and subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods

Bonds to 100:

$0+100$	$10+90$	$20+80$	$30+70$	$40+60$	$50+50$

When adding 3 one-digit numbers, this can be done in any order. Look for number bonds or near doubles to make it easier

$4+6+5$ \qquad

To find 10 more or 10 less, adjust the tens column only

To add or subtract two numbers, we can partition them and add/subtract the ones and the tens Ten ones = one ten This can be exchanged

Addition of two numbers can be done in any order (commutative) Subtraction of one number from another cannot be done in any order

Addition and subtraction are the inverse of each other They are the opposite
Bar models and part whole models are useful representations for seeing the inverse relationship of addition and subtraction

There are two different subtractions that you can do Addition is commutative; subtraction is not
\square
Recognise and use the inverse relationship between addition and subtraction and use this to check calculations

$$
9+9=10+\underset{\sim}{\wedge}
$$

Use the inverse relationship between addition and subtraction to check calculations and solve missing number problems.
$53-9=50$ -

	There are two different subtractions that you can do Addition is commutative; subtraction is not		
Year 4	Adding and subtracting 1000 from a number can be done mentally Identify the thousands column and adjust this It may lead to surrounding columns needing to change if there is a 0 or 9 in the thousands column If the numbers being added together have a different number of digits, place value columns must be lined up accurately Knowledge around exchange is the same as Year 3 but extended to apply to 4 digit numbers We can estimate answers by rounding both addends or subtrahends and calculating mentally We can also use the inverse to check answers Bar models and part whole models are useful representations for seeing the inverse relationship of addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate estimate and use inverse operations to check answers to a calculation	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. 1,235 people go on a school trip. There are 1,179 children and 27 teachers. The rest are parents. How many parents are there?
Year 5	Rounding helps us check whether an answer is broadly accurate. e.g. $4836+1976$ rounded would be $5000+2000$ so the answer should be close to 7000 . If you subtract one from each addend, the answer will be the same. This can help efficient calculations	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

	e.g. $7000-4537$ would be $6999-4536$ and this would require no exchange	add and subtract numbers mentally with increasingly large numbers use rounding to check answers to calculations Use knowledge of the inverse from previous years to solve calculations with larger numbers	Mr Rose is buying items for his home. He has a budget of $£ 1,500$ He buys a washing machine and a tumble dryer. Does he have enough money left to buy the dishwasher? use rounding to determine, in the context of a problem, levels of accuracy
Year 6	If you subtract one from each addend, the answer will be the same. This can help efficient calculations Context of decimals e.g. 7-3.24 would be 6.99-3.23 and this would require no exchange When calculations have mixed operations, the order matters. Addition and subtraction would be done last Estimating answers helps us check whether an answer is broadly accurate. We can do this by loosely rounding a number and calculating mentally	perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the four operations use estimation to check answers to calculations	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why solve multi-step problems involving addition, subtraction, multiplication and division including applying addition and subtraction procedures into other strands of mathematics. Problems should explore mixed operations in multi-steps In the context of a problem, use estimation to check an appropriate degree of accuracy.

Multiplication and Division

Progression of Knowledge

Children start to progress in multiplication when they are secure with additive structures. In the Early Years, pupils will have many hands on and concrete experiences of sharing and making groups and this is built upon in Year 1 where pupils continue to group and share and explore arrays. Children are only introduced to the multiplication and division symbols in Year 2 where they start to understand how to represent these in number statements. At this stage, children will explore repeated addition and subtraction as well as informal methods of grouping and sharing to ensure that they leave KS1 with a firm understanding of the concept of multiplication and division. Throughout KS2, as their understanding of place value develops, children learn to apply this understanding to increasingly bigger numbers and more formalised methods to ensure accuracy and efficiency. Knowledge of table facts begins in Year 2 and progresses sequentially to allow deep learning links to be made through the learning of times tables. All children will leave Year 4 proficient in rapid recall of times table facts up to 12×12 to prepare them for the formalised methods of multiplication and division throughout Upper Key Stage 2.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
EYFS	Double means twice as many Double 1 is 2 Double 2 is 4 Double 3 is 6 Double 4 is 8 Double 5 is 10 Sharing must be done equally - this means they are all the same amount Some quantities will share equally into 2 groups - these are even Some quantities will not share equally into 2 groups - these are odd Odd numbers	Understand double facts Build simple doubles Recognise doubles Understand how quantities can be distributed equally.	Solve simple practical and contextual problems through familiar scenarios with the use of concrete objects to support e.g. these 3 teddy bears are coming to the teddy bear's picnic and we need to share the buns equally

Odd and even

Even numbers can be grouped into 2 s ; odd numbers cannot

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Even numbers will have $0,2,4,6$ or 8 in the

 ones columnOdd numbers will have $1,3,5,7$ or 9 in the ones column

Multiplication of two numbers can be done in any order (commutative)

2×4 is the same as 4×2
Division of one number by another cannot be done in any order Division is sharing equally
The division symbol is :-
20

$20 \div 4=5$
Doubling a number is multiplying by 2
Halving a number is dividing by 2
Multiplication is equal groups
We can show these equal groups using an array

2 timestrble
$1 \times 2=2$
$2 \times 2=2$
$2 \times 2=2$
$3 \times 2=1$
$4 \times 2=10$
$5 \times 2=10$
$6 \times 2=12$
$7 \times 2=14$
$8 \times 2=16$
$90 \times 2=18$
$10 \times 2=20$
3 tuimestable
$1 \times 3=3$
$2 \times 3=6$
$3 \times 3=62$
$4 \times 3=12$
$5 \times 3=15$
$6 \times 3=18$
$7 \times 3=21$
$8 \times 3=24$
$9 \times 3=27$
$10 \times 3=30$

4 timestable	
1	$\times 4=4$
2	$\times 4=8$
$3 \times 4=12$	
$4 \times 4=16$	
$5 \times 4=20$	
$6 \times 4=24$	
7	$\times 4=28$
$8 \times 4=32$	
$9 \times 4=36$	
$10 \times 4=40$	

5 timestable
$1 \times 5=5$
$2 \times 5=10$
$3 \times 5=15$
$4 \times 5=20$
$5 \times 5=25$
$6 \times 5=30$
$7 \times 5=35$
$8 \times 5=40$
$9 \times 5=45$
$10 \times 5=50$
8 timestable
$1 \times 8=8$
$2 \times 8=16$
$3 \times 8=24$
$4 \times 8=32$
$5 \times 8=40$
$6 \times 8=48$
$7 \times 8=56$
$8 \times 8=64$
$9 \times 8=72$
$10 \times 8=80$
statements for multiplication and

Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

	Multiplication is the opposite of division If I know $3 \times 4=12$, I know $12 \div 3=4$ and $12 \div 4=3$ These are called inverse division facts We can use multiplication facts to work out related facts	division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods	Esther has 2 jars of mints. She shares all the mints equally between 3 bowls. How many mints are in each bowl?
Year 4		Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers Recall all times tables and division facts Recognise and use factor pairs and commutativity in mental calculations Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects. The mass of a banana is 140 g . The mass of a pineapple is 345 g . Bag A contains 8 bananas and bag B contains 3 pineapples. Which bag is heavier and by how much?

	Factor pairs are pairs of numbers that multiply together to make a given number Multiply by 0 - when one of the factors is 0 , the product will always be 0 Multiply by 1 - when one of the factors is 1 , the product will be the other factor Dividing by 1 - number remains the same A number divided by itself will always $=1$ Multiplication is commutative - the order doesn't matter $3 \times 4=4 \times 3$ Multiplying 3 numbers together - the order doesn't matter $\begin{gathered} 4 \times 4 \times 5= \\ 4 \times 20=80 \end{gathered}$ We can use multiplication facts to work out related facts $\text { e.g. } 3 \times 4=12 \quad 30 \times 4=120 \quad 300 \times 4=1200$		H	T 1	$\begin{array}{\|l\|} \hline 0 \\ \hline 7 \\ \hline 4 \\ \hline \end{array}$	
Year 5	Factors = numbers that a number is divisible by without a remainder Factors can be found by working systematically Factors come in pairs Common factors $=2$ or more numbers having the same factor Common factors: 1, 2, 5, 10 Multiples = the result of multiplying a number by something Multiples can be found by counting in jumps of that number or repeatedly adding the number on Common multiples $=2$ or more numbers having the same multiple				ultiples and factors, nding all factor pairs of and common factors of rs hether a number up to e and recall prime to 19 applying cabulary mbers up to 4 digits by wo-digit number using itten method, including lication for two-digit	Solve multi-step problems with mixed operations applying the facts and procedures that they know A multipack of water contains 6 bottles of water. A box holds 3 multipacks of water. A shop orders 24 boxes of water. How many bottles of water have they ordered?

	$1^{3}=1$ $2^{3}=8$ $3^{3}=27$ $4^{3}=64$ $5^{3}=125$ $6^{3}=216$ $7^{73}=343$ $8^{3}=512$ $9^{3}=729$ $10^{3}=1000$ The result of multiplying a number by itself and then by itself again		
Year 6	Factors = numbers that a number is divisible by without a remainder Factors can be found by working systematically Factors come in pairs Common factors $=2$ or more numbers having the same factor 2×5 Common factors: 1, 2, 5, 10 Multiples = the result of multiplying a number by something Multiples can be found by counting in jumps of that number or repeatedly adding the number on Common multiples $=2$ or more numbers having the same multiple Multiples of 6 : $6,12,18 \text {, 24, } 36,42 \text {, 48 }$ Multiples of 8: $8,16,24,30,40,48$ Prime numbers = a number with exactly 2 factors: 1 and itself If a number is not prime, it is composite 1 is not a prime number 2 is the only even prime number	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	Solve problems involving addition, subtraction, multiplication and division Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Bottles of water can be bought in packs of either 6 or 9 A school needs to buy enough water for 268 pupils for Sports Day. A pack of 6 bottles costs $£ 4$ A pack of 9 bottles costs $£ 5$ Is it cheaper to buy only packs of 6 bottles or only packs of 9 bottles? How much cheaper?

Fractions

Progression of Knowledge

Pupil formally start to learn fractions in Year 1 where they learn the concept of a half and a quarter and how to find a half or a quarter. They widen their knowledge of different fractions in Year 2 where they explore thirds and three quarters and start to find fractions of numbers. The majority of declarative knowledge is imparted throughout lower key stage 2 where pupils learn to write, order, compare, add, subtract and find equivalences. They extend this in Year 5 and 6 where they work with fractions with different denominators and learn procedures around calculating with a range of fractions.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
$\begin{aligned} & \text { EYF } \\ & \mathrm{S} \\ & \hline \end{aligned}$	Children are not explicitly taught fractions in the early years but when exploring capacity, they refer to things being half full, full, empty and nearly empty which is a pre-fraction skill as it is building understanding of wholes and halves.		
Year 1	Half = one of two equal parts Quarter = one of four equal parts Whole = all of the parts The parts must be equal \square \square But don't have to look the same All of these represent halves of the rectangle \square They have 2 equal parts	Find half or quarter of a shape or object Find half or quarter of a quantity or set of objects 4010	Recognising simple contexts where fractions might apply e.g. Ben has lost a quarter of his sweets
$\begin{aligned} & \text { Year } \\ & 2 \end{aligned}$		Recognise halves, quarters and thirds What fraction is shaded in each diagram?	Solve simple problems applying the declarative and procedural knowledge from KS1

	We write a half like this. $\frac{1}{2}$ 2 parts make the whole and we have 1 of them. We write a quarter like this. $\frac{1}{4}$ 4 parts make the whole and we have 1 of them. We write three quarters like this. $\frac{3}{4}$ 4 parts make the whole and we have 3 of them. We write a third like this. $\frac{1}{3}$ 3 parts make the whole and we have 1 of them. $1 / 2$ is equivalent to $\frac{2}{4}$ (same value) We can find a fraction of a number by sharing it (dividing) into equal groups $1 / 4$ of 12 We can also use a bar model $3 / 4$ of 8 \square	Find fractions of a length, shape, set or objects or quantity. Circle half the cakes. Shade $\frac{1}{3}$ of each shape. write simple fractions for example, $1 / 2$ of 6 $=3$ $\frac{1}{2}$ of $12=$ \square $\frac{1}{4}$ of $12=$ \square	I am thinking of a number. One third of my number is 12 Which will be greater, one half of my number or one quarter of my number?
$\begin{array}{\|l\|} \hline \text { Year } \\ 3 \end{array}$	Writing fractions Denominator shows how many equal parts the whole has been divided into Numerator shows how many of those parts we have	Write unit and non-unit fractions Count in fractions on a number line	Solve problems involving finding a fraction of a set of objects

```
Numerator
How many parts }
are we looking at?
Denominator
arts are there?
```

Unit fractions have a numerator of 1
 $\frac{1}{3}$ is shaded
 $\frac{1}{5}$ is shaded

Non-unit fractions have a numerator greater than 1
They are made up of a quantity of unit fractions e.g. $1 / 4+1 / 4+1 / 4=3 / 4$

is shaded

Equivalent means same value or amount
We can see these on double number lines or fraction walls

To add and subtract fractions with the same denominator, the denominator stays the same and you add or subtract the numerator.
$\frac{1}{7}+\frac{2}{7}=\frac{3}{7}$

one seventh + two sevenths $=$ three sevenths

Comparing and ordering

When the numerators are the same, the bigger the denominator, the smaller the fraction. The smaller the denominator, the bigger the fraction.

Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small
denominators

$$
\frac{2}{3} \text { of } 36=24
$$

recognise and show, using diagrams, equivalent fractions with small denominators
add and subtract fractions with the same denominator within one whole [for example, $5 / 7+1 / 7=6 / 7$]
compare and order unit fractions, and fractions with the same denominators

She eats $\frac{1}{4}$ of the sweets.
She gives $\frac{1}{5}$ of the sweets that are left to Dora and 2 sweets to her mum.
How many sweets does Eva have left?
Solve problems involving adding and subtracting fractions
Jack has $\frac{\pi}{8}$ of a chocolate bar.
He eats $\frac{4}{8}$ of the chocolate bar
What fraction of the chocolate bar does he have left?
Solve problems involving comparing and ordering fractions
Use the digit cards to work out what the fractions could be. You can use the digit cards more than once each time.

	$$ When the denominators are the same, the bigger the numerator, the bigger the fraction. The smaller the numerator, the smaller the fraction. $\frac{3}{5}<\frac{4}{5}$ $\frac{6}{7}>\frac{2}{7}$		
$\begin{aligned} & \text { Year } \\ & 4 \end{aligned}$	Equivalent fractions can be found by multiplying or dividing both the numerator and denominator by the same amount Mixed numbers are made up of whole numbers and a fraction Improper fractions will have a numerator greater than a denominator It can be written as either $\frac{7}{4} \quad 1 \frac{3}{4}$	Recognise and show, using diagrams, families of common equivalent fractions Count in fractions beyond 1 Calculate fractions of amounts with nonunit fractions and larger numbers Convert between improper fractions and mixed numbers Add and subtract fractions with the same denominator - the answer may exceed 1 whole $\frac{3}{5}+\frac{4}{5}+\frac{4}{5}=\frac{11}{5}=2 \frac{1}{5}$ Subtract from the whole	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number solve problems involving adding and subtracting fractions, including answers greater than one whole and subtracting from the whole A chocolate bar has been split into 10 equal parts. $\begin{aligned} & \text { Rosie eats } \frac{3}{10} \text { of the bar. } \\ & \text { Dexter eats } \frac{1}{10} \text { of the bar more } \\ & \text { than Rosie. } \end{aligned}$ What fraction of the chocolate bar is left?

		$\frac{8}{8}-\frac{2}{8}=\frac{6}{8}$ Subtract from a mixed number $2 \frac{4}{8}-\frac{7}{8}=1 \frac{5}{8}$	
Year 5	To find an equivalent fraction, we can multiply the numerator and denominator by the same number. To add, subtract, compare and order fractions, the denominators must be the same. When the denominators are multiples of each other, we can find the equivalent fraction $\times 3\left(\begin{array}{l} \frac{1}{3}+\frac{1}{9}=\frac{4}{9} \\ \frac{3}{9}+\frac{1}{9}=\frac{4}{9} \end{array}\right.$ Multiplying fractions is the same as repeated addition e.g. $3 / 4 \times 3$ is the same as $3 / 4+3 / 4+3 / 4$	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths Find a common denominator compare and order fractions whose denominators are all multiples of the same number recognise mixed numbers and improper fractions and convert from one form to the other $\begin{aligned} & 5 \frac{1}{6}=\frac{31}{6} \\ & \square 11 \\ & \square+1 \\ & \square \end{aligned}{ }^{5 \times \frac{6}{6}=\frac{30}{6}}$ add and subtract fractions with the same denominator and denominators that are multiples of the same number multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	Solve a range of problems involving all procedural knowledge, including twostep problems On Saturday, Alex cycles for $\frac{2}{3}$ of an hour. On Sunday, she cycles for $\frac{5}{12}$ of an hour. a) How many more hours does Alex cycle on Saturday than Sunday?

Decimals and Percentages

Progression of Knowledge	

Children are introduced to decimals in Year 3 once they have a firm understanding of whole numbers in the number system. They start by exploring tenths and relating fractions to decimals. During Year 4, children are introduced to hundredths and gain some depth of understanding regarding the place value of decimals and how to manipulate them to divide by 10 and 100, round, order and compare. They then apply this to decimal notation in Money in Year 4. At the start of Upper Key Stage 2, children are introduced to thousandths and look at ways of calculating using decimals. They start to explore the link between fractions, decimals and percentages which is built upon in Year 6 along with confidence in using all 4 operations with decimals and exploring problem solving and conditional knowledge linked to decimals.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
Year 3	Tenths arise from dividing one whole into ten equal parts Tenths can be written as fractions or as decimals	Counting up and down in tenths, crossing the decimal point Express tenths as decimals and fractions	
Year 4	Ten tenths = one Can be exchanged between columns	Express tenths and hundredths as decimals and fractions	Solve money and measure problems using decimals to 2 decimal places

Ones	Tenths

The tenths column is ten times smaller than the ones column When dividing by ten, the number is split into ten equal parts and is ten times smaller so we can move the digits down one column.

Hundredths arise from dividing one whole into one hundred parts One tenth = ten hundredths

Hundredths can be written as tenths and hundredths and using the two place value columns after the decimal point.

0 •

Fraction	Decimal
$\frac{91}{100}$	0.91
Fraction	Decimal
$\frac{9}{100}$	0.09

They can be written as fractions
Parts of one hundred

Dividing one- and two-digit numbers by 10

Counting up and down in hundredths
Dividing one- and two-digit numbers by 100 $32 \div 100=$

Use bonds to 100 to make one whole using tenths and hundredths

Compare and order numbers with the same number of decimal places (up to hundredths)

Round decimals with one decimal place to the nearest whole numbers

	Dividing by 100 is the same as dividing by ten and then dividing by ten again. Move the digits down 2 place value columns to make a number 100 times smaller To round decimals to the nearest whole number, look at the digit in the tenths column to decide whether to round up or not. $5,6,7,8,9$ - rounds up to the next whole number $0,1,2,3,4$ - rounds down to the whole number before Halves and quarters can be written as decimals $\frac{1}{2}=\frac{5}{10}=\frac{50}{100}=0.5$ $\frac{1}{4}=\frac{25}{100}=0.25$ $\frac{3}{4}=\frac{75}{100}=0.75$		
Year 5	One thousandth $=1$ whole split into 1000 parts It is the columns after hundredths Ten thousandths $=1$ hundredth Thousandths can be expressed as fractions and decimals	Order and compare decimals with up to 3 decimal places, including with different decimal places Round decimals to the nearest whole number	Solve 1 and 2 step problems involving adding and subtracting decimals up to 3 decimal places. Solve problems involving multiplying and dividing by 10,100 and 1000

Per cent = number of parts per hundred
We use this symbol to represent percentages \%
If the whole is split into 100 equal parts, each part is worth 1%

There are $\frac{37}{37 \%}$ parts out of a hundred shaded.
This is
Percentages can be written as fractions with a denominator of 100 We can use some equivalent fractions to see percentages
100\%

$10 \% 10 \% 10 \% 10 \% 10 \% 10 \% 10 \% 10 \% 10 \% 10 \%$

Round decimals to the nearest tenth

Express percentages as decimals and fractions

Add and subtract decimals with the same and a different number of decimal places including crossing the whole

Multiply and divide decimals by 10,100 and 1000

	Percentages can be written as decimals - using the tenths and hundredths column as the percentage out of 100. We can represent the same values as fractions, decimals and percentages - they are all ways of representing part of a whole $\begin{aligned} & 45 \text { out of } \\ & 100 \end{aligned} \quad \frac{45}{100}=45 \%=0.45$ When calculating with decimals, we use the same methods as whole numbers but apply what we know about decimal place value Empty columns can be filled with a zero as a place holder We use decimal place value to multiply and divide by 10, 100 and 1000 Multiplied by $10=$ move one place to the left Multiplied by $100=$ move two places to the left Multiplied by $1000=$ move 3 places to the left Divided by $10=$ move one place to the right Divided by $100=$ move two places to the right Divided by $1000=$ move three places to the right		
Year 6	Multiplying decimals is the same methods as multiplying whole numbers but the place value is different	Calculate all four operations using decimals Express remainders as decimals Express fractions, decimals and percentages as representations of each other	Solve multi-step problems involving adding, subtracting, multiplying and dividing decimals in context Recognising multiplicative and division structures and applying procedural knowledge of decimals

However many decimal places there are in the number that you are multiplying, there will be that many in the product.

Dividing decimals is the same methods as dividing whole numbers but the place value is different

$$
\begin{array}{|l|l|l|l|}
\hline & 1 \cdot 3 & 2 \\
\hline 4 & 5 \cdot 12 & 8 \\
\hline
\end{array}
$$

When dividing, remainders can be expressed as decimals by showing empty tenths/ hundredths columns as appropriate

$$
\begin{array}{|r|r|}
\hline 0.875 \\
\hline 8 \longdiv { 7 . 7 0 ^ { 6 } { } ^ { 4 } 0 }
\end{array}
$$

To find a fraction as a percentage, we would find an equivalent

fraction in hundredths to find the parts per hundred

$$
\frac{3}{5}=\frac{60}{100}=60 \%
$$

Equivalent fractions, decimals and percentages
Tenths and hundredths using place value, also:

Fraction	Decimal		Percentage
$\frac{1}{2}$	0.5	50%	
$\frac{1}{4} \frac{3}{4}$	0.25	0.75	$25 \% ~ 75 \%$
$\frac{1}{3} \frac{2}{3}$	0.33	0.66	$33 \% ~ 66 \%$
$\frac{1}{5} \frac{2}{5} \frac{3}{5} \frac{4}{5}$	0.2	0.4	0.6

Order fractions, decimals and percentages

Find a percentage of an amount

Solve problems involving percentages, including finding the whole

Solve multistep problems involving fractions, decimals and percentages

	Percentages of amounts: To find 50%, divide by 2 because $50 \%=1 / 2$ To find 25%, divide by 4 because $25 \%=1 / 4$ To find 10%, divide by 10 because $10 \%=\frac{1}{10}$ To find 1%, divide by 100 because $1 \%=\frac{1}{100}$ To find 5%, divide by 10 and then halve it		
To find any multiple of 10%, find 10% then multiply by that number.			
10% of $120=12$			
20% of $120=24$			
To find any multiple of 1%, find 1% then multiply by that number.			
To find any percentage, partition it, find the parts and recombine			
it.			

Shape and Pattern

Progression of Knowledge

Shape knowledge features heavily in the Early Years curriculum and pupils enter Year 1 with an awareness of shape names. Throughout KS1 they learn to describe them with accuracy and during KS2, they are exposed to more complicated shapes and learn the procedures of geometry and classification. At all stages, pupils solve problems to apply their knowledge.

\begin{tabular}{|c|c|c|c|}
\hline \& Declarative knowledge 'I know that...' \& Procedural knowledge 'I know how...' \& Conditional knowledge 'I know when...'

\hline \[
$$
\begin{array}{|l}
\hline \text { EYF } \\
\mathrm{S}
\end{array}
$$

\] \& \begin{tabular}{l}
Circles have one curved side Triangles have 3 straight sides

Squares and rectangles have 4 straight sides and 4 corners

Patterns can use shapes and colours to repeat

$\triangle O$ \triangle
\triangle

 \&

Copy, continue and create their own simple repeating patterns with at least three full units of repeat. AB, ABB, AABB, AAB, AABBB

Including a range of shapes, colours and sizes

Recall names for 2 D shapes

Recall some names for 3D shapes

Explore which 3D shapes stack and roll

 \&

Use what children know to explore situations and challenges e.g we need to build a tower for Rapunzel, which 3D shapes would be best and why?

Pose problems to discuss relating to patterns e.g. this repeating pattern is all muddled up, can you help to sort it out?
\end{tabular}

\hline
\end{tabular}

Year \begin{tabular}{l}
Recognise, name and sort 2D

shapes in different orientations

and different sizes

Recognise, name and sort 3D

\quad

Using knowledge of shapes and

descriptions to explore and solve

simple problems e.g. my shape rolls

what could it be?

shapes

Describe and repeat patterns

using 2D and 3D shapes
\end{tabular}

	We can describe 2D shapes by: - the number of sides - the number of vertices (corners) - If they have a line of symmetry A shape is symmetrical if both sides of the line are equal - the line is called a line of symmetry We can describe 3D shapes by: - the number of faces - the number of vertices - the number of edges We can fold a shape to see if it is symmetrical	Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] Compare and sort common 2-D and 3-D shapes and everyday objects. Make patterns with 2D and 3D shapes	to make vertices Applying consider group of	new shape, s it have? ocedural kno odd one out apes have be	many edge to or how a sorted
Year 3	Horizontal line down across Vertical line	Identify horizontal and vertical lines and pairs of perpendicular and parallel lines.	Use knowledge and procedures to sort shapes based on multiple criteria Sort a selection of 3-D shapes using the criteria in the table.		
	Parallel lines - always the same distance apart. They will never meet	Draw 2D shapes		At least one triangular face	No triangular faces
		Make 3D shapes using modelling materials	Prism		
	17	Recognise 3D shapes in	Not a prism		
	Perpendicular lines - meet at right angles	Recognise 3D shapes in different orientations and describe them			

	Shapes can have more than one line of symmetry Patterns can have lines of symmetry as long as it is a reflection		
Year 5	Polygon = closed shape made of straight lines Regular polygon: - all sides equal in length - all interior angles the same size If this is not the case, it is an irregular polygon Rectangles will always have 4 right angles and opposite sides will be equal in length	Identify 3D shapes from 2D representations Distinguish between regular and irregular polygons	Use knowledge about rectangles to work out missing sides and angles
Year 6	Circumference $=$ measurement around the edge of a circle Diameter is twice the radius Centre of the circle is called the origin $\begin{aligned} \text { Radius } & =\frac{\text { diameter }}{2} \\ \text { Diameter } & =\text { radius } \times 2 \end{aligned}$ A net is a 3D shape unfolded. From this, we can see the 2D shapes on each of its faces	Compare and classify shapes based on properties and sizes. Calculate the diameter and radius and vice versa, given the other Draw shapes accurately using a ruler and protractor	Solve problems involving all shape knowledge and applying understanding of properties of shapes to find missing lengths, angles and dimensions Solve problems involving nets of 3D shapes and visualising constructions

Angles

Progression of Knowledge

Children are introduced to the concept of an angle in the Year 3 Maths curriculum.
Throughout KS1, children have developed their knowledge of polygons and turns in preparation for introduction to angles in KS2.
Children start by learning the concept of an angle and the different types and facts around this area. They learn the procedures for working with angles as they progress throughout KS2.
It is only in UKS2 that children start to deploy this into problem solving and familiarise with the conditions where these facts and procedures are useful.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
Year 3	An angle is where 2 straight lines meet A right angle is a quarter turn There are 2 right angles in a half turn There are 3 right angles in a 3 quarter turn There are 4 right angles in a full turn Angles are measured in degrees A right angle is $\mathbf{9 0}$ degrees A straight line is $\mathbf{1 8 0}$ degrees	Identifying right angles, acute and obtuse angles	
Year 4	An acute angle is smaller than $\mathbf{9 0}$ degrees An obtuse angle is greater than 90 degrees but smaller than 180 degrees	Comparing angles and ordering by size	
Year 5	A reflex angle is greater than 180 degrees but less than 360 degrees A protractor (angle measurer) can be used to draw and measure angles	Measuring angles using a protractor Drawing angles using a protractor	Applying facts and procedures to find missing angles on a straight line and around a point.

	Angles on a straight line will always add up to 180 degrees Angles around a point will always add up to 360 degrees	Finding missing angles on a straight line and around a point	
Year 6	Where two straight lines cross, the angles opposite each other are called vertically opposite. Vertically opposite angles will always be equal Interior angles are the angles inside a polygon. Interior angles of a triangle will equal $\mathbf{1 8 0}$ degrees Interior angles of a quadrilateral will equal $\mathbf{3 6 0}$ degrees To find the sum of interior angles of a polygon, split it into the smallest number of triangles x 180 degrees.	Find missing angles in triangles and quadrilaterals Finding the interior angles of a regular polygon $\begin{aligned} \text { number of sides } & =5 \\ \text { number of triangles } & =3 \\ 3 \times 180 & =540 \end{aligned}$ The sum of the interior angles of a pentagon is 540°	Applying facts and procedures to find missing angles inside quadrilaterals, triangles and regular polygons and solve problems with more than one missing angle.

Position and Direction

Progression of Knowledge	This unit of learning comes AFTER the fractions sequence of learning in Year 1 so that children have deep knowledge of the concept of a half and a quarter before applying this to half and quarter-turns. It also comes BEFORE the time sequence of learning in Year 1 as it gives children a deep understanding of quarters and halves as a 360 turn so that they can then see this on a clock face and apply this to half and quarter past. During year 3, no new declarative knowledge is acquired but the ability to consolidate and apply the knowledge from Key Stage 1 is practised alongside linking this to the learning of angles. Throughout the rest of Key Stage 2, pupils start to develop their understanding of coordinates on the first quadrant and translation and reflection before moving to all 4 quadrants in Year 6.		
	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
EYFS	Words can be used to describe where things are: on, next to, over, under, around, through, above, below We can use maps to show where places are	Respond to positional language in practical situations e.g. when tidying up, put the blocks next to the beads. Begin to use positional language to describe where things are in relation to each other	
Year 1	A turn is to rotate about a point. Position is where something is. Left, right, above, below and in between can be used to describe position. Direction is where something is going. Left, right, forwards and backwards can be used to describe direction.	Describing positions using mathematical --.....age ribing directions using mathematical Quarter Jage turn ribing movement as turns including half, quarter and three-quarter turns	

Year 2	Positions on a grid can be described using left, right, up and down. Turns can go in different directions. Clockwise is to your right (like the hands of a clock move) Anti-clockwise is to your left	Describing patterns using position and direction language Anti-clockwise A quarter turn Continuing patterns that apply the rules Ordering and arranging objects in patterns and sequences	Applying facts and procedures to continue patterns of mathematical objects in a sequence.
Year 3	Direction and size of turns can be combined to describe movements. Different descriptions of turns can get you to the same position. e.g - the crab turns to face the shell. It could have done.. A quarter turn anticlockwise OR A three-quarter turn clockwise	Recognising angles as a description of a turn	
Year 4	The coordinates going horizontally are the x coordinates. The coordinates going vertically are the y coordinates. Coordinates are written (x, y) Translation is a movement The shape will not change if being translated, just move.	Efficient and accurate methods for first quadrant grid construction. Plotting points and describing the position as coordinates in the first quadrant. Describing movements between positions as translations of a given unit to the left/right and up/down Plotting points and drawing sides to complete a given polygon.	

Year 5	Translation is the movement of a shape on a grid. The language up, down, left and right can describe a translation. When translating a shape, choose just one point. Reflection uses the axis as a mirror line. It is like a line of symmetry. To reflect a shape, count how many squares away from the mirror line each point is to plot the points. It can be checked using a mirror Translation the shape doesn't change, just moves. Reflection the shape will look the opposite of the original.	Identifying whether a movement is a reflection or a translation Describing the position of a shape following a reflection or translation using the appropriate language Representing shapes that have been translated or reflected	
Year 6	A coordinate grid has 4 quadrants The middle (0) is called the origin Negative numbers are used Coordinates are still written as (x, y)	Efficient and accurate methods for coordinate geometry in all 4 quadrants. Describing positions and plotting of coordinate points in all 4 quadrants Translating simple shapes on the coordinate plane Reflecting simple shapes in the axes of the coordinate plane	Applying facts and procedures to find missing coordinate points by labelling the axes and applying other geometrical knowledge. E.g.

	The same knowledge and procedures of translation and reflection can be applied to all four quadrants	The diagram shows two identical triangles. The coordinates of three points are shown. Find the coordinates of point A .

Money

Progression of Knowledge

Children are introduced to Money in Year 1 where they learn the core knowledge of the purpose of money and what the coins and notes represent. They are then introduced to the symbols in Year 2 and start to combine amounts of pounds and pence to find totals, but do not cross over the threshold of pence to pounds at this stage. This is learnt in Year 3 where children start to convert money and apply the equivalence of pence to pounds. Knowledge of decimals acquired in Year 4 is applied to this area of Maths where pupils learn to express amounts of money using decimal notion, which they then calculate with in Year 5. There is no new declarative knowledge relating to money covered in Upper Key Stage 2. During this phase, pupils refine their procedural knowledge and develop their conditional knowledge in a range of contexts and drawing upon a range of strategies.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
EYFS	Money is not explicitly taught in EYFS but children will still explore coins within provision to familiarise the concept of money being used to pay for things. Children may count 1 p coins but not others as they are still learning to understand the concept of unitising.		
Year 1	Money is used to buy and pay for things Money comes in coins and notes - different ones have different values In England, we use pounds and pence These coins represent pence: These coins represent pounds: These notes represent pounds:	Recognising coins and notes Determining which coins have greater value Using knowledge of counting in ones, fives and tens to count coins	

	e.g $£ 4.89$ is close to $£ 5$ This is helpful when estimating prices to find totals.	Add and subtract amounts of money given in decimal notation (not required to add and subtract decimals at this stage children will partition and recombine or use a number line)	Changing a practical context into a calculation Multi- step problems involving adding and subtracting money.
Year 5		Add and subtract amounts of money given in decimal notation and using decimal notation in the calculation methods.	Use all four operations to solve problems involving money and using decimal notation. Here are some items for sale in a shop. a) How much more does a scarf cost than a bag of marbles? b) Esther has $£ 15.31$ She buys a pair of headphones and a bag of marbles. How much money does she have left?
Year 6			Use all 4 operations and multi-step problems involving money and drawing upon other strands of mathematics e.g percentages and fractions It costs a factory $£ 2.32$ to produce 8 key rings. The factory sells the key rings in boxes of 5 for $£ 3.20$ How much profit do they make on each key ring?

Knowledge

Measurement is a key area of Early Mathematics where children build the language, vocabulary and understanding in a very practical and hands on approach to prepare them for the Key Stage 1 curriculum. Throughout Key Stage 1 pupils explore length, mass, capacity and volume first by measuring using non-standard units and progressing towards standard units. They will compare and solve problems at all stages. Children start to learn equivalence facts in Year 2 by simply understanding how many centimetres are in a metre and new facts are acquired and explored in each year group including imperial measurements being introduced throughout Upper Key Stage 2. Children start to convert the measures that they know in Year 3 in a simple way and do not explore decimal notation in measures until Year 4 when children are secure with knowledge of decimal place value. Conditional knowledge towards the end of Key Stage 2 is extensive and can involve multi-steps, different operations and conversions as well as calculations.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
EYFS	Objects can be described by size: - big / little - large / small - tall / short (height) - long / short (length) - wide /narrow Mass can be described by: - heavy/ heavier/ heaviest - light / lighter/ lightest Smaller objects are not always lighter and bigger objects are not always heavier Capacity can be described by: - empty - full - half full - nearly full - nearly empty	Compare and order objects by size and mass and describe using mathematical language Sort objects based on their size and mass Use balance scales to explore mass Apply their understanding of language into practical tasks e.g. build a taller tower Explore basic capacity practically e.g. how many scoops of sand will this container hold; how many cups of water will this bucket hold	Solve practical problems applying knowledge of mathematical language with familiar contexts e.g. teddy is packing his suitcase for his holiday and wants to take his lightest toys with him, which should he pack?

		Measure using non-standard units of measure e.g. 3 hands long	
Year 1	Length = how long something is To describe length, we would say longer or shorter Height is a type of length usually going up - we would use the language taller or shorter We can measure length using objects (e.g cubes, paperclips) but we must use the same objects We can measure length in centimetres using a ruler Mass = how heavy or light something is If the scales balance, the mass is equal If the balance scale goes lower, it is heavier If the balance scale goes higher, it is lighter Capacity = amount a container can hold Volume = amount of something inside the container empty nearly empty nearly full full	Measure and begin to record the following: - lengths and heights (nonstandard and ruler) - mass/weight (in cubes) - capacity and volume (non-standard- in cups) Compare and describe: - lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] - mass/weight [for example, heavy/light, heavier than, lighter than] - capacity and volume [for example, full/empty, more than, less than, half, half full, quarter]	Solve practical problems for: - lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] - mass/weight [for example, heavy/light, heavier than, lighter than] - capacity and volume [for example, full/empty, more than, less than, half, half full, quarter]
Year 2	Length and height We can measure in metres or centimetres	Choose and use appropriate standard units to estimate and measure: length/height in any direction (m/cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml)	Solve simple contextual problems involving using different measures and applying the calculations that they know Ben has a toy train, a toy plane and a toy car. - The train is 28 cm long. The plane is 16 cm longer. How long is the plane? - The train is double the length of the car. How long is the car?

Centimetres are smaller than metres so we would use them to measure

Metres are bigger than centimetres so would use them to measure bigger things

100 centimetres $=1$ metre

Mass

We can measure mass in grams and kilograms
Kilograms are heavier than grams and used to measure heavier things.
Grams are lighter than kilograms and used to measure lighter things.

Volume/capacity

We can measure volume in millilitres and litres

Temperature

Measures how hot or cold something is.
Temperature is higher when something is warmer temperature is lower when something is colder. We use a thermometer to measure temperature Temperature is measured in degrees Celsius and we write this as ${ }^{\circ} \mathrm{C}$

Measure to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels

Compare and order lengths, mass, volume/capacity and record the results using $>$, < and =

How much milk is there altogether in each set of cartons?

1000 grams = 1 kilogram

Convert = swap between one unit of measurement to another but the amount or size stays the same.
To convert from a smaller unit of measurement to a bigger, we divide
To convert from a bigger unit of measurement to a smaller, we multiply
We divide and multiply by the size of the measurement that we are converting
Metric = system for measures that uses a base 10
Imperial = older system for measures - some are still used today

- 1 inch $\approx 2.5 \mathrm{~cm}$
- 1 stone = 14 pounds
- 1 foot $=12$ inches
- 1 gallon $=8$ pints
- 1 pound = 16 ounces

Year 6 millimetres = 1 centimetre
100 centimetres $=1$ metre
1000 metres = 1 kilometre
1000 millilitres = 1 litre
1000 grams = 1 kilogram
1000 kilograms = 1 tonne
Convert = swap between one unit of measurement to another but the amount or size stays the same.
To convert from a smaller unit of measurement to a bigger, we divide
To convert from a bigger unit of measurement to a smaller, we multiply We divide and multiply by the size of the measurement that we are converting

5 miles is approximately equal to 8 kilometres
We can use this fact to work out other conversions e.g
5 miles $\approx 8 \mathrm{~km}$
10 miles $\approx 16 \mathrm{~km}$
millimetre; gram and kilogram litre and millilitre)

Convert between standard units, converting measurements of length, mass and volume from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places

Convert between miles and kilometres

Use all four operations to solve problems involving measure [for example, length mass, volume] using decimal notation and including scaling.

Solve 2 step problems combining calculating and converting measures
he depth of a plank is 15 mm .
each other.
The stack of planks?
Sive gour answer in centimetres.

Solve multi-step problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate. Jack wonts to find out the moss of his suitcose.
Jack weigh 34.5 kg .
He steps onto the scales and it shows 47 kg
and 200 g .
How heavy is his suitcase?

Solve problems drawing upon and applying other strands of mathematics and notating answers accurately where stipulated

Solve contextual problems involving the conversion of miles and kilometres
Esther cycles 70 miles over 4 days.
On day 1 , she cycles 14 miles.
On day 2 , she cycles 32 km .
On day 4 , she cycles twice as far as she does on day 3
How far does she cycle on day 4 ?
Give units with your answer.

Progression of Knowledge

Children first explore the concept of time in EYFS where they use simple language to describe events and their daily routine. They build upon this and start to learn to tell the throughout Year 1 (to the hour and half past), Year 2 (to the nearest 5 minutes) and Year 3 (to the nearest minute). Children should leave Year 3 secure with telling the time to prepare them for learning about digital and 24-hour clocks in Year 4.
There is no new declarative or procedural knowledge introduced throughout Upper Key Stage 2. During this phase, pupils apply their knowledge to solve problems in different ways with flexibility and deep understanding of how to manipulate and convert time. Therefore, it is essential that pupils end Year 4 being fluent and confident telling the time.

	Declarative knowledge 'I know that...'							Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
EYFS	Night time is when we go to bed and it gets dark Day time is when we wake up and it is light Today is the day that we are in now Tomorrow is the day that will be next Morning is when we have just woken up Afternoon is after lunch							Order key events in daily routines Use language to describe when events happen day, night, morning, afternoon, before, after, today, tomorrow, now, next, later Informally measure time e.g. how many jumps can I do before the sand timer runs out or use a calendar to count down how many days until an event	
Year 1	There are 7 days in a week							Compare and describe	
	Monday	Tuesday	Wednesday	Thursday	Friday			language e.g. quicker, slower, earlier, later	
	There are 12 months in a year								

	July Time can Second Minutes Hours = Telling t A clock The shor minute When th O'clock hour At half way arou half-way	August measure shortest ger mea me longer hand is th ger han ns on th the hour the clock ween the	September in seconds, asurement ement of tim d and a sho hour hand pointing to hour. The sh he minute h m 12 to 6. ours.	October minutes time er hand he longer 2 , this is ter hand d has tra he hour hand	November d hours and is the o 'clock ows us the lled halfd will be	December	Measure and record time in hours, minutes and seconds Sequence events in chronological order using appropriate language e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening Use language relating to dates e.g. days, weeks, months and year Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times	
Year 2	60 minu 24 hours Telling t At quar the way will be ju At quar way arou hour. Th will be n Every nu We can	= 1 hou day me past, the and the past the \mathbf{o}, the \mathbf{m} he clock nute hand at the r on the counting	inute hand k and is poi ute hand h and has only will point at hour. ock face repr multiplies of	has travel ing at 3. travelled to go unt and the ents 5 m to help	a quarter of e hour hand 4 of the the next ur hand utes work out the		Compare and sequence intervals of time Tell and write time to the nearest 5 minutes, including quarter past/to and draw the hands on a clock face to show these times	Solve simple word problems involving time Aisha and Kim both started their homework at 6 o'clock. Aisha finished her homework at 25 past 6 Kim's homework took her 10 minutes longer. What time did Kim finish her homework?

Year 4	Time can be displayed in 2 different ways 1. Analogue = clock face 2. Digital = numbers e.g. hours : minutes We use the hour and minute hand to help us write time in digital format In $\mathbf{2 4}$ hour clock, am times are the same expect for midnight										Read, write and convert time between analogue and digital Understand digital time written in 24-hour clocks Convert units of time e.g. hour to minute	Solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days
Year 5												Solve problems involving converting between all units of time Solve problems involving applying knowledge of time to interpreting timetables Solve problems involving adding and subtracting time, including calculating durations, and understanding the methods that are useful
Year 6												

Area, Perimeter and Volume

Progression of Knowledge

Children are introduced to the concept of perimeter in Year 3 once they have secure knowledge of 2D shapes and different lengths from KS1 Geometry and Measurement sequences of learning. In Year 4, this progresses to the perimeter of rectilinear shapes and once secure with perimeter, children move onto being introduced to the concept of area. This is firstly introduced in Year 4 as counting squares and links to knowledge of arrays and multiplication. It progresses towards a formula for different shapes throughout Upper Key Stage 2. Children explore the difference between perimeter and area in depth by Year 6.
Children are first introduced to volume in Upper Key Stage 2 once they have a firm understanding of perimeter and area. It is explored as $1 \mathrm{~cm}^{3}$ blocks first in Year 5 to build concrete understanding before progressing to using a formulae for calculating volume in year 6 . The link between area and volume is made explicit.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
Year 3	Perimeter = total length around the edge of a 2D shape Length can be measured in $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ etc and so can perimeter. \square Measure the sides - using a ruler Add them all up to find total length Use knowledge of shapes to help: - All sides on a square will be equal length - Opposite sides of a rectangle will be equal	Measuring perimeter Calculating perimeter Finding the most efficient strategy for adding multiple values together e.g. use of doubles and number bonds.	
Year 4	Perimeter on a grid - can count the sq Only around the outside Apply knowledge of shapes to help	ing efficient methods to calculate the rimeter 〕 length + width $\times 2$ for a rectangle igth $\times 4$ for a square	Knowing the perimeter of a rectangle or square can be used to work out missing sides.

	Area of a compound shape: - split into rectangles - find the area ($1 \times$ w) - add back together - apply knowledge of finding missing lengths if needed Volume $=$ amount of space an object takes up 4 cubes Measured in centimetres cubed cm^{3}		
Year 6	Perimeter = add up all the sides Area of a rectangle $=$ length \mathbf{x} width Shapes with the same areas can have different perimeters Shapes with the same perimeters can have different areas Area of a triangle $=$ base x height $\mathrm{x} 1 / 2$ Area of a parallelogram = base \times perpendicular height	Recognise when it is possible to use formula for area and volume of shapes Calculate the area of parallelograms and triangles Calculate the volume of cubes and cuboids	Solve multi-step problems involving application of all procedural and declarative knowledge relating to this area.

	Volume of a cuboid $=$ length x width x height	

Statistics

Progression of Knowledge

Children first explore statistics in Year 2 where they look at basic tally charts, pictograms and block diagrams. Pupils explore the contexts and purpose of gathering data. This is developed in Year 3 where they build upon knowledge of pictograms, explore bar charts and spend more time eliciting and solving problems with information from these. In Year 4 and 5, children explore line graphs, bar charts and timetables and start to understand the differences between discrete and continuous data and the decisions that mathematicians make when representing data - such as which graph and which scale is most appropriate. In Year 6, children explore pie charts and apply knowledge of angles to help construct these.

Year 4	Discrete data = shows stand alone data or information at a point in time e.g. favourite colours The best way to show this is a bar chart, pictogram or table Continuous data $=$ shows data over time The best way to show this is a time graph (line graph) A measurement of time will usually go along the \mathbf{x} axis What is being measured will go along the \mathbf{y} axis We can use this to see find information about one variable based on the other.	Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. Decide which scale will be most appropriate when representing a set of data	Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
Year 5	Line graphs can be used to show data other than related to time such as conversion graphs Line graphs can be used to find out information about one point based on the other. Tables show data and information in categories - we can use this to retrieve information and use it to compare.	Interpret and construct line graphs - finding the difference between 2 points, the amount of time spent above/below certain points and make inferences based on the information presented. Complete, read and interpret information presented in tables.	Solve comparison, sum and difference problems using information presented in line graphs, tables and timetables

Progression of Knowledge	The concept of Algebra and the knowledge associated to it is only introduced in Year 6 once children are fully secure with the number system and how it operates. They will build upon knowledge from other year groups of using operations and their inverses to find missing numbers.

Inverse operations are used to help solve equations.

$\mathrm{c}+5=12$
$12-5=\mathrm{c}$
2-step equations require 2 steps of the inverse - first isolate the

letter

$2 \mathrm{a}+5=13$
$13-5=2 a$
$8=2 a$
$8 \div 2=a$
Equations may have 2 unknown values $e . g 2 b+c=7$ We can work systematically to find all possible values
e.g if $b=1, c=5$
if $b=2, c=3$
if $b=3, c=1$
We cannot know the exact values as we don't have enough information

Find pairs of numbers that satisfy an equation with two unknowns

Enumerate possibilities of combinations of 2 variables

$$
3 a+2 b=20 \quad x+y=5
$$

x	y	$x+y$
0	5	5
		5
		5

Progression of Knowledge

Children first experience simple problems relating to correspondence and scaling in years 4 and 5 linked to multiplication. Explicit ratio knowledge is only introduced in Year 6 once pupils have a firm understanding of the number system. Starting with exploring objects being linked to each other, children are then introduced to the language and notation before recognising contexts in which this information is useful.

	Declarative knowledge 'I know that...'	Procedural knowledge 'I know how...'	Conditional knowledge 'I know when...'
Year 6	Ratio represents a multiplicative relationship between two amounts. One value is related to another e.g. for every 2 red counters, there are 3 blue counters this would be written as a ratio using the symbol : The ratio of red to blue red: blue 2:3 Ratios can be simplified - like fractions Yellow: Blue 16: 8 2: 1 Ratios can represent more than 2 values The bar model shows the ratio 2:3:4 When you multiply or divide one amount, you do the same to the other in the ratio Scale diagrams show something drawn not to size but in proportion	Write relationships using ratio notation and simplify ratios Use multiplication and division facts to work out simple rations Find a scale factor of a drawing Enlarge or reduce a shape by a given scale factor	Solve a variety of problems using ratio: - \quad Finding missing values using multiplication and division facts - Where the ratio is given and one value is known - Where the ratio is given and the total is known - Where something is scaled up or down e.g. one-tenth the size - Where proportions are used e.g. this recipe feeds 3 but we are cooking for 12 - Where shapes are similar - Where scale factors are used

	Scale factor is the factor that something has been enlarged or reduced by To find a scale factor, we can use the dimensions and work out what it has been multiplied or divided by All sides will be enlarged/reduced by the same scale factor - they will be in proportion Angles will not change

Mathematics - Knowledge progression

FS1 Long Term Plan 2021 - 2022 Maths

	Autumn 1		Autumn 2		Spring 1		Spring 2		Summer 1		Summer 2	
General Themes	My Favourite Colours		Special Times \& Nursery Rhymes		Traditional Tales		The Wonder of Water 1		Ready, Steady, Growl		Creepy Crawlyl	
Key Vocabulary	Colour Sort Same Different	Blg Small Count Match	Biger Biggest Smaller smallest	More Less None Zero	Number Shape name Sides Edges	Curve Straight Subitise	Number Shape name Sides Edges		Order More Fewer Part	Numeral Amount Total	First, next, thenetc Long, tall, short	Light/Heasy Capacity words Positional language
Number Numerical Patterns	Number Songs /Colours /Matching/ Sorting Children will: Recognise, name, match $\&$ sort by colour. - Sort by other attributes e.g. size - Rote count through songs \& rhymes - Develop everyday maths wocabulary		Number 1/ Number 2 - Rote counting to 10 - Develop 1-1 correspondence to 5 Giant's footsteps! Number 1 - 'One Wonderful Mel' - 2D shape - Circles - 'Circle' - Mac Bennett - Use numeral \& formation rhyme for 1 - One or lots? Number 2 - One \& another one... - Identify 20 shape - semicircle Classifying-circle/semi-circle - Subitise 1 \& 2 - Use numeral \& formation rhyme for 2 - Make pairs - Creating patterns		Number 3/Number 4/ Number 3 - Recognise 2D shape triangle - Use positional languagebuild with shape - Subitise 1, 2 \& 3 Number 4 - Find 4 abjects \& an no line - 5ubitise 1, 2, 3 \& 4 - Represent 4 an 5 frame, an fingers etc - Recognize 2D shape Squares and rectangles - Use numeral \& formation rhymes to 4 - Make pattern with shape \& numerals - Understand composition 4		Number 5/1 more \& 1 fewer - Order numerals 1-5 - Find 5 objects \& positionon numbor line. - Represent 5 on 5 frame - Recognise 20 shape-stars \& Dontagons - Use numeral \& formstion rhyme to 5 - Order numerals 1-5 - Represent5 - marks, pictures, fingors - Match numoralk Equantities - Understand the composition of 5 - Explore 1 more than/1 fewer then		Comparing amounts, sizes, capacity/pattern Children will: - Use \& extend the language of size - One-one principles, stable-order principle, cardinal principle, ahstraction principle, order-irrelevance principle - Compare amount of objects - 2D shapes - 2D shapes		My Day /Capacity/ Positional Language Children will: - Order daily events - Understand and apply Long Short Tall - Understand and apply Light and heavy comparing - Understand and apply Full/half-full/empty and comparing - Use language relating to position and direction	

End of Nursery Goals:

-Children are able to subitise to 3 .
-Children are able to name \& recognise some numbers up to 5.
Children are able to represent numbers 0 -5 in various different ways.
-Children are to know \& be able to discuss properties of some 20 \& 30 shape using informall language
*Children are able to use specific shape for purpose (use triangle for roof). Children are able to copy \& continue a simple ABAB pattern.

FS2 Long Term Plan 2021 - 2022
Maths

	Autumn 1		Autumn 2		Spring 1		Spring 2		Summer 1		Summer 2	
General Themes	Me and My Family		Seasons, Animals \& Habitats		People Who Help Us		Living Things \& Plants		Let's exploreour neighbourhood		Under the Sea (Materials etc)	
Key Vocabulary	Count Time Days of the week	Fewer/fewest smasiler/small est	Recognise Compare Represent Compose	Positional language in/infront of, behind, side, under	Recognise Compare Represent Compose	Pattern subitise	Recognise Compare Represent Compose	20/30 shapes Height/length Order Number bonds	fecognise Bigner /smaller	Shape numbers bon ds	Odd/even messure	Amount Total Combine Add takeawzy
Number Numerical Patterns	Children will know: - And can talk about passage of time through deys of the week \& months of the vear. - Childrencan follow AB ABB patterns. - Childrencan orally count post 10. - How to sort objects into different yroups - How to match objects that are the same as another. - How to compare amounts into usingsmaller/smallest/ fewer/fewest		Children will know: - How to identify numbers 1 2,3,4 and 5. - How to represent numbers 1234 and 5 - How to compare numbers 1234 and 5 - How to compose numbers 1234 and 5 - How to use some positionsl language to describe the position of an object. - How to recognise triangles and circles in different shopes and pictures. - Childrenare able to recognise some numbers 0-10,		Children will know: - How to recognise numbers 4 and 5 - How to compare numbers 4 and 5 - How to represent numbers 4 and 5 - How to compose numbers 4 and 5 - Children can creste \& follow AB ABB patterns \& be able to spot the rule. - Children can orally count to 20 Childrencan use units when messuring \& comparing [weipht, length capacity). Childrencan subitise to 5 .		Children will know: - How to recognise numbors 67 8 and 9 - How to represent numbors 67 8 and 9 - How to compare numbers 678 and 9 - How to compose numbers 678 and 9 - How to combine 2 groups together. - How to compare objects for haightand length using mathomatical language. - How to ordor 2 objects for haight and length using mathematical language - Children cen describe properties of 20 and 30 shapes using mathomatical language. - Numbor bonds to 10.		Children will know: - How to recognise numbers to 20. - Recognibepatterns in numbers beyond 10 . - Be able to name \& recognise s range of numbers up to 10 \& represent these numbers in warious different ways. - number bonds to 10 - How two sdd groups together. - How to take sway a smaller another from a bigger number to 10 . - Childrenare developing on awareness of shope, recognibing shapes withinshspes.		Children will know: - How to double a number to 10. - How to share an equal amount between two or more groups. - childrenten use mathemstical language whencompsring \& messuring practically. - How to spot \& discuss simple number patterns such as odd \& even numbers. - Children are using units to messure \& compsre.	
	Eazly Leanning Goaks: -Have a doop understanding of number to 10 , including the composition of each number. -Subitise (recognisequantities without counting) up to 5 . *Automatically recall (withoutreference torhymas, counting or other aids). Number bonds up to 5 (including subtraction facts) \& some number bends to 10 , including doubles *Verbally count beyond 20, recognising the pattern of the counting system. *Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. *Explore \& represont parterns within numbors up to 10 , including evens \& oddk, double facts \& how quartitiescan be distributed equally.											

Foundation stage 2:

I can recognise the - symbol.
I can recognise the $=$ symbol.
I know all numbers bonds to 5 (record small steps $1,2,3,4,5$)
I know all numbers bonds to 10 (record small steps $6,7,8,9$ and 10)
I know all my doubles to $3 / 5 / 10$.
I can count to say one more than any number $0-5 / 5-10 / 10-15 / 15-20$.
I can count to say one less than any number 0 - $5 / 5-10 / 10-15 / 15-20$.
I can add a 1-digit number to a 1-digit number.
I can subtract a 1-digit numbers from a 1-digit number
I can add a 1-digit number to a 2-digit number.
I can subtract 1-digit numbers from a 2-digit number
I can recognise simple 2D shapes.
I can draw a simple map.
I can use below, above, next to, in front, behind in relation to positions (sometimes on a simple map)
I can compare weight of objects.
I can compare length of objects.
I can use the vocabulary first, then, next to sequence time.
I can name the days of the week.
I can name the months of the year.
I can name the months of the year.

Year 1:

I can count $0-50$.
I can count $50-100$.
I can count back from $50-0$.
I can count back from $100-0$.
I can count on or back from 0 to 100 starting from different points.
I can recognise digits to $30 / 50 / 100$ in and out of order (rapid recall).
I can recognise the tens in a 2-digit number. I can represent this.
I can recognise the ones in a 2-digit number. I can represent this.
I know all numbers bonds to 10 (record small steps $0,1,2,3,4,5,6,7,8,9$ and 10)
I can count on/back in 2 s to 24.
I can count on/back in 5 s to 60.
I can count on/back in 10 s to 100.
I can count 1 more with objects by counting or using a number line
I can count 1 more from any given number $0-100$.
I can count 1 less with objects by counting or using a number line
I can count 1 less from any given number 100 - 0.
I can form digits to 10 without reversals.
I can form digits to 20 without reversals.
I can recognise the + symbol.
I can recognise the - symbol.
I can recognise the $=$ symbol.
I can add two 1-digit numbers.
I can add a 1-digit number to a 2-digit number.
I can subtract two 1-digit numbers.
I can subtract a 1-digit number from a 2-digit number.
I can solve missing number problems.
I can recognise ALL 2D shapes.

I can recognise ALL 3D shapes.

I can recognise and represent a half turn

I can recognise and represent a full turn

I can recognise $1 / 2$ of a shape, quantity or number.
I can recognise $1 / 4$ of a shape, quantity or number.

I can recognise and read the hour on a clock.

I can recognise and read half past/quarter past on a clock.
I can name the days of the week.
I can name the months of the year.

Year 2:

I can count forwards and backwards to/from 100 verbally from any given number.
I can count forwards and backwards to/from 100 verbally from any given number.
I can recognise digits to 100 (rapid recall)
I can recognise the tens in a 2-digit number. I can represent this.
I can recognise the ones in a 2-digit number. I can represent this.
I know ALL number bonds to 20 (0-5, 5-10, 10-15, 15-20.)
I can count on/back in 2 s to 24 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 2s (from 0x to 12x/ in reverse)
Recall 2 times table facts in and out of order at pace.
I can count on/back in 5s to 60 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 5s (from 0x to 12x/ in reverse)
Recall $5 x$ facts in and out of order.
I can count on/back in 10s to 100 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 10s. (from 0x to 12x/ in reverse)
Recall 10x facts in and out of order.
I can count on/back in 3s to 36 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 3s (from 0x to 12x/ in reverse)
Recall $3 x$ facts in and out of order.
I can count 1 more with objects by counting or using a number line/hundred square
I can count 1 more from any given number 0-100 beginning to bridge past 100.
I can count 1 less from any given number 100-0 beginning to bridge past 100.
I can form digits correctly to 10/20/50/100 with no reversals.
I can recognise the +/ -/ = symbol.
I can recognise the X symbol.
I can recognise the \div symbol.
I can add a two-digit and 1-digit number with NO exchanging.
I can add a two-digit and 1-digit numbers WITH exchanging.

I can subtract a two-digit and 1-digit numbers with NO exchanging.
I can subtract a two-digit and 1-digit numbers WITH exchanging.
I can add two, two-digit numbers with NO exchanging.
I can add two, two-digit numbers WITH exchanging.
I can subtract two, two-digit numbers with NO exchanging.
I can subtract two, two-digit numbers WITH exchanging.
I can multiply a 1 digit number by a 1 digit number using arrays.
I can multiply a 2 digit number by a 1 digit number using arrays.
I can divide a 2 digit number by a 1 digit number with NO remainders.
I can recognise ALL 2D shapes.
I can recognise ALL 3D shapes.
I can recognise and represent a half turn.
I can recognise and represent a full turn.
I can recognise $1 ⁄ 21 / 4$ and $1 / 3$ of a shape, quantity or number.
I can recognise $2 / 4$ and $3 / 4$ of a shape, quantity or number.
I can recognise and read the hour on a clock.
I can recognise and read half past/quarter past on a clock.
I know the number of minutes in an hour and hours in a day.

Year 3:

I can form numbers to 100 correctly without reversals.		
I can form ALL numbers correctly.		
I can use manipulatives to represent numbers to 100.		
I can use manipulatives to represent numbers to 1000.		
I can recognise the + - X \div symbol.		
I can add/subtract 1 to a number mentally.		
I can add/subtract 10 to a number mentally.		
I can add/subtract 100 to a number mentally.		
I can add two/three digit numbers with NO exchanging.		
I can add two/three digit numbers WITH exchanging.		
I can subtract two/three digit numbers with NO exchanging.		
I can subtract two/three digit numbers WITH exchanging.		
I can multiply a 2 digit number by a 1 digit number.		
I can multiply two numbers using 2/5/10 times table facts.		
I can multiply two numbers using 3 times table facts.		
I can multiply two numbers using 4 times table facts.		
I can multiply two numbers using 8 times table facts.		
I can divide a 2 digit number by a 1 digit number with NO remainders.		
I can divide a 2 digit number by a 1 digit number with WITH remainders. I can recognise and use commutativity to solve problems.		
I can recognise ALL 2D and 3D shapes.		
I can recognise horizontal, vertical and parallel lines.		
I can recognise a right angle.		
I can measure the perimeter of a 2D shape.		
I can recognise $1 / 21 / 41 / 32 / 43 / 4$ of a shape, quantity or number.		
I can order fractions in a linear system.		
I can add fractions with the same denominator.		

I can recognise and read the hour and minutes on a clock.
I can recognise all coins and notes.

Year 4:

I can write numbers to 100 and form them correctly.
I can write numbers to 500 and form them correctly.
can write numbers to 1000 and form them correctly.
I can count backwards through 0 to include negatives up to -10
I can count backwards through 0 to include negatives beyond -10
I can count in 2s to 24
I can count in 2s to 100 (different starting points numbers).
I can count in 2s beyond 100 (different starting points.)
Recall of associated times tables facts for 2s.
I can count in 3s to 36
I can count in 3s to 100 (different starting points numbers).
I can count in 3s beyond 100 (different starting points.)
Recall of associated times tables facts for 3s.
I can count in 4s to 48 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 4s.
I can count in 5 s to 60 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 5s.
I can count in 6 s to 72 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 6s.
I can count in 7s to 84 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 7s.
I can count in 8s to 96 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 8s.
I can count in 9s to 108 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 9s.
I can count in 10s to 120 (and beyond/ different starting points/ into 3-digit numbers).

Recall of associated times tables facts for 10s.		
I can count in 100s to 1,200 (and beyond/ different starting points/ into 4-digit numbers).		
Recall of associated times tables facts for 100s.		
I can count in 1000s to 12,000 (and beyond/ different starting points).		
Recall of associated times tables facts for 1,000s.		
I can recognise thousands, hundreds, tens and ones in a 4 digit number.		
I can compare and order numbers to 1000.		
I can read roman numerals to 100.		
I can use manipulatives to represent numbers to 1000.		
I can recognise the + - = X \div symbol.		
I can add/subtract 1, 10 and 100 to a number mentally.		
I can add two/three/four digit numbers with NO exchanging.		
I can add two/three/four digit numbers WITH exchanging.		
I can subtract two/three/four digit numbers with NO exchanging.		
I can subtract two/three/four digit numbers WITH exchanging.		
I can recall multiplication and division facts within 12×12		
I can multiply two/three digit numbers by a one digit number.		
I can divide a number by another including remainders		
I can use commutativity and distributive law to solve problems.		
I can solve 2 step problems. (e.g. $3 \times 4+6$)		
I can recognise ALL 2D and 3D shapes.		
I can recognise a right angle, acute and obtuse angles.		
I can measure the perimeter and area of a 2D shape.		
I can recognise and find a line of symmetry on a 2D shape.		
I can convert mixed numbers to improper fractions.		
I can add/subtract fractions with the same denominator.		
I can add/subtract improper and mixed fractions including bridging. I can recognise and write decimal equivalents of any number of tenths or hundreds and of 1/4, 1/2, 3/4		

I can draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant

I can compare decimal numbers and round them to 1 or 2 places.

I can read, write and convert using analogue and digital clocks.

I can recognise and calculate using all coins and notes.
I can convert between different measures.

Year 5:

I can estimate volume
I can recognise and find a line of symmetry on a 2D shape.
I can convert mixed numbers to improper fractions. (e.g. $\frac{13}{4}$)
I can add/subtract fractions with the same denominator.
I can add/subtract improper and mixed fractions including bridging.
I can recognise mixed numbers and improper fractions and convert from one form to the other
I can recognise and write percentage and decimal equivalents of any number of tenths or hundreds, multiple of 10 or 25 and of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$
I can draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant.
I can compare decimal numbers and round them to 1 or 2 places.
I can read, write, order and compare numbers with up to 3 decimal places
I can read, write, convert and solve problems using analogue and digital clocks.
I can recognise and calculate using all coins and notes.
I can convert between different measures.

Year 6:

I can write numbers to 1,000,000 and form them correctly.
I can say what each digit represents 1,000,000
I can write numbers to 10,000,000 and form them correctly.
I can say what each digit represents 10,000,000
I can count forwards through 0 to include negatives.
I can count backwards through 0 to include negatives.
I can count and recall facts within 12×12
I can count in 2s to 24 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 2s.
I can count in 3s to 36 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 3s.
I can count in 4 s to 48 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 4s.
I can count in 5 s to 60 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 5 s .
I can count in 6s to 72 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 6 s .
I can count in 7s to 84 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 7s.
I can count in 8s to 96 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 8s.
I can count in 9s to 108 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 9s.
I can count in 10s to 120 (and beyond/ different starting points/ into 3-digit numbers).
Recall of associated times tables facts for 10s.
I can count in 11s to 132 (and beyond/ different starting points/ into 3-digit numbers).

I can divide proper fractions by whole numbers

I can associate a fraction with division and calculate decimal fraction equivalents

I can solve problems involving the calculation of percentages

I can solve problems involving similar shapes where the scale factor is known or can be found

I can use simple formulae

I can express missing number problems algebraically

I can find pairs of numbers that satisfy an equation with 2 unknowns
I can enumerate possibilities of combinations of 2 variables
I can read, write, convert and solve problems using analogue and digital clocks
I can recognise and calculate using all coins and notes.
I can convert between different measures.

Mathematics - Vocabulary progression

Number						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
zero number one, two, three ... eleven, twelve ... none how many ...? count count (up) to count on (from, to) count back (from, to)	number numeral one, two, three ... eleven, twelve ... twenty, twenty-one ... none how many ...? count count (up) to count on (from, to) count back (from, to) forwards backwards count in ones, twos ... equal to equivalent to is the same as more/ less most/ least many odd/even multiple of few pattern pair	number numeral one, two, three ... eleven, twelve ... twenty, twenty-one ... one hundred, two hundred ... none how many ...? count count (up) to count on (from, to) count back (from, to) forwards backwards count in ones, twos ... equal to equivalent to is the same as more/ less most/ least tally many odd even multiple of sequence continue predict few	number numeral one, two, three ... eleven, twelve ... twenty, twenty-one ... one hundred, two hundred ... none how many ...? count count (up) to count on (from, to) count back (from, to) forwards backwards count in ones, twos ... equal to equivalent to is the same as more/ less most/ least tally many odd even multiple of factor of sequence continue predict	number numeral one, two, three ... eleven, twelve ... twenty, twenty-one ... one hundred, two hundred ... none how many ...? count count (up) to count on (from, to) count back (from, to) forwards backwards count in ones, twos ... equal to equivalent to is the same as more/ less most/ least tally many odd even multiple of factor of sequence continue predict	number numeral one, two, three ... eleven, twelve ... twenty, twenty-one ... one hundred, two hundred ... none how many ...? count count (up) to count on (from, to) count back (from, to) forwards backwards count in ones, twos ... equal to equivalent to is the same as more/ less most/ least tally many odd even multiple of factor of factor pair sequence continue	number numeral one, two, three ... eleven, twelve ... twenty, twenty-one ... one hundred, two hundred ... none how many ...? count count (up) to count on (from, to) count back (from, to) forwards backwards count in ones, twos ... equal to equivalent to is the same as more/ less most/ least tally many odd even multiple of factor of factor pair sequence continue

		pattern pair rule $>$ greater than $<$ less than	few pattern pair rule relationship $>$ greater than $<$ less than roman numerals	few pattern pair rule relationship next consecutive > greater than <less than roman numerals integer positive negative above (below) zero minus negative numbers	predict few pattern pair rule relationship next consecutive > greater than or equal to < less than or equal to roman numerals integer positive negative above (below) zero minus negative numbers formula divisibility square number prime number ascending descending order	predict few pattern pair rule relationship next consecutive > greater than or equal to < less than or equal to roman numerals integer positive negative above (below) zero minus negative numbers formula divisibility square number prime number factorise prime factor ascending descending order digital total

Place Value						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
ones						
tens						
digit	digit	hundreds	hundreds	hundreds	hundreds	hundreds
the same number as	the same number as	digit	digit	digit	digit	digit
as many as	as many as	one-, two, three-digit number	one-, two-, three-digit number			
more	more	place	place	place	place	place
larger	larger	place value				
bigger	bigger	stands for				
greater	greater	represents	represents	represents	represents	represents
fewer	fewer	exchange	exchange	exchange	exchange	exchange
smaller	smaller	the same number as				
less	less	as many as				
fewest	fewest	more	more	more	more	more
smallest	smallest	larger	larger	larger	larger	larger
least	least	bigger	bigger	bigger	bigger	bigger
most	most	greater	greater	greater	greater	greater
biggest	biggest	fewer	fewer	fewer	fewer	fewer
largest	largest	smaller	smaller	smaller	smaller	smaller
greatest	greatest	less	less	less	less	less
one/ ten more	one/ ten more	fewest	fewest	fewest	fewest	fewest
one/ten less	One/ten less	smallest	smallest	smallest	smallest	smallest
compare	equal to	least	least	least	least	least
order	compare	most	most	most	most	most
size	order	biggest	biggest	biggest	biggest	biggest
first, second, third Twentieth	size	largest	largest	largest	largest	largest
last, last but one	first, second, third twentieth	greatest	greatest	greatest	greatest	greatest
before	last, last but one	one/ten more	one/ten/ hundred more	one/ ten/ hundred/thousand more	one/ ten/ hundred/ thousand more	one/ ten/ hundred/ thousand more
after	before	one/ten less	one/ten/ hundred less	one/ ten/ hundred/thousand less	one/ ten/ hundred/ thousand less	more one/ ten/ hundred/ thousand less
next	after	equal to	equal to	One/ ten/ hundred/ thousandless	one/ ten/ hundred/ thousand less	one/ ten/hundred/ thousand less

between	next between half-way between above below	```compare order size first, second, third Twentieth twenty-first, twenty-second ... last, last but one before after next between half-way between above below```	compare order size first, second, third Twentieth twenty-first, twenty-second ... last, last but one before after next between half-way between above below	equal to compare order size first, second, third Twentieth twenty-first, twenty-second ... last, last but one before after next between half-way between above below	equal to compare order size first, second, third Twentieth twenty-first, twenty-second ... last, last but one before after next between half-way between above below	equal to compare order size first, second, third Twentieth twenty-first, twenty-second ... last, last but one before after next between half-way between above below

Estimating						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
guess how many ...? estimate nearly close to about the same as just over just under too many too few enough not enough	guess how many ...? estimate nearly roughly close to about the same as just over just under too many too few enough not enough	guess how many ...? estimate nearly roughly close to about the same as just over just under exact exactly too many too few enough not enough	guess how many ...? estimate nearly roughly close to approximate(ly) about the same as just over just under exact exactly too many too few enough not enough round nearest round to the nearest ten/ hundred round up round down	guess how many ...? estimate nearly roughly close to approximate(ly) about the same as just over just under exact exactly too many too few enough not enough round nearest round to the nearest ten/ hundred/thousand round up round down	```guess how many ...? estimate nearly roughly close to approximate(ly) about the same as just over just under exact exactly too many too few enough not enough round nearest round to the nearest ten/ hundred/thousand/ ten thousand round up round down```	guess how many ...? estimate nearly roughly close to approximate(ly) about the same as just over just under exact exactly too many too few enough not enough round nearest round to the nearest ten/ hundred/ thousand/ ten thousand round up round down

Addition and Subtraction						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
add, more, and make, sum, total altogether double one more, two more ... ten more how many more to make ...? how many more is ... than? how much more is ...? take away how many have gone? one less, two less, ten less... how many fewer is ... than ...? how much less is ...? difference between	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more how many more to make ...? how many more is ... than? how much more is ...? subtract take away how many have gone? one less, two less, ten less... how many fewer is ... than ...? how much less is ...? difference between equals is the same as number bonds/pairs missing number	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more ... one hundred more how many more to make ...? how many more is ... than? how much more is ...? subtract take away how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? how much less is ...? difference between equals is the same as number bonds/pairs/facts tens boundary missing number	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more ... one hundred more how many more to make ...? how many more is ... than? how much more is ...? subtract take away how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? how much less is ...? difference between equals is the same as number bonds/pairs/ facts tens boundary, hundreds boundary missing number	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more ... one hundred more how many more to make ...? how many more is ... than? how much more is ...? subtract take away how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? how much less is ...? difference between equals is the same as number bonds/pairs/facts tens boundary, hundreds boundary missing number inverse	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more ... one hundred more how many more to make ...? how many more is ... than? how much more is ...? subtract take away how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? how much less is ...? difference between equals is the same as number bonds/pairs/facts tens boundary, hundreds boundary, ones boundary, tenths boundary missing number inverse	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more ... one hundred more how many more to make ...? how many more is ... than? how much more is ...? subtract take away how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? how much less is ...? difference between equals is the same as number bonds/pairs/facts tens boundary, hundreds boundary, ones boundary, tenths boundary missing number inverse

Multiplication and Division						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
sharing doubling halving number patterns	multiplication multiply multiplied by multiple division dividing grouping sharing doubling halving array number patterns	multiplication multiply multiplied by multiple groups of times once, twice, three times ... ten times repeated addition division dividing, divide, divided by, divided into grouping sharing, share, share equally left, left over one each, two each, three each ... ten each group in pairs, threes ... tens equal groups of doubling halving array row, column number patterns multiplication table multiplication fact, division fact	multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times ... ten times repeated addition division dividing, divide, divided by, divided into grouping sharing, share, share equally left, left over, remainder one each, two each, three each ... ten each group in pairs, threes ... tens equal groups of doubling halving array row, column number patterns multiplication table multiplication fact, division fact	multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times ... ten times repeated addition division dividing, divide, divided by, divided into grouping sharing, share, share equally left, left over, remainder one each, two each, three each ... ten each group in pairs, threes ... tens equal groups of doubling halving array row, column number patterns multiplication table multiplication fact, division fact inverse square, squared cube, cubed	multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times ... ten times repeated addition division dividing, divide, divided by, divided into grouping sharing, share, share equally left, left over, remainder one each, two each, three each ... ten each group in pairs, threes ... tens equal groups of doubling halving array row, column number patterns multiplication table multiplication fact, division fact inverse square, squared cube, cubed	```multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times ... ten times repeated addition division dividing, divide, divided by, divided into grouping sharing, share, share equally left, left over, remainder one each, two each, three each ... ten each group in pairs, threes ... tens equal groups of doubling halving array row, column number patterns multiplication table multiplication fact, division fact inverse square, squared cube, cubed```

Fractions						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
parts of a whole half quarter	fraction equal part equal grouping equal sharing parts of a whole half one of two equal parts quarter one of four equal parts	fraction equivalent fraction mixed number numerator, denominator equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts	fraction equivalent fraction mixed number numerator, denominator equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths ..	fraction equivalent fraction mixed number numerator, denominator equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths ... hundredths decimal, decimal fraction, decimal point, decimal place, decimal equivalent proportion	fraction, proper/improper fraction equivalent fraction mixed number numerator, denominator equivalent, reduced to, cancel equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths ... hundredths, thousandths decimal, decimal fraction, decimal point, decimal place, decimal equivalent proportion, in every, for every percentage, per cent, \%	fraction, proper/improper fraction equivalent fraction mixed number numerator, denominator equivalent, reduced to, cancel equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths ... hundredths, thousandths decimal, decimal fraction, decimal point, decimal place, decimal equivalent proportion, in every, for every ratio percentage, per cent, \%

Algebra						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
						formula, formulae equation unknown variable

Measurement						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
measure size compare guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as just over, just under	measure measurement size compare guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as roughly just over, just under	measure measurement size compare measuring scale guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as roughly just over, just under	measure measurement size compare measuring scale, division guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as, approximately roughly just over, just under	measure measurement size compare unit, standard unit metric unit measuring scale, division guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as, approximately roughly just over, just under	measure measurement size compare unit, standard unit metric unit, imperial unit measuring scale, division guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as, approximately roughly just over, just under	measure measurement size compare unit, standard unit metric unit, imperial unit measuring scale, division guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as, approximately roughly just over, just under

Length						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
metre length, height, width, depth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher longest, shortest, tallest, highest far, near, close	centimetre, metre length, height, width, depth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher longest, shortest, tallest, highest far, near, close ruler metre stick	centimetre, metre length, height, width, depth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher longest, shortest, tallest, highest far, further, furthest, near, close ruler metre stick, tape measure	millimetre, centimetre, metre, kilometre, mile length, height, width, depth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher longest, shortest, tallest, highest far, further, furthest, near, close distance apart ... between ... to ... from perimeter ruler metre stick, tape measure	millimetre, centimetre, metre, kilometre, mile length, height, width, depth, breadth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher longest, shortest, tallest, highest far, further, furthest, near, close distance apart ... between ... to ... from edge, perimeter area, covers square centimetre (cm^{2}) ruler metre stick, tape measure	millimetre, centimetre, metre, kilometre, mile length, height, width, depth, breadth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher longest, shortest, tallest, highest far, further, furthest, near, close distance apart ... between ... to ... from edge, perimeter area, covers square centimetre (cm^{2}), square metre $\left(\mathrm{m}^{2}\right)$, square millimetre (mm^{2}) ruler metre stick, tape measure	millimetre, centimetre, metre, kilometre, mile, yard, foot, feet, inch, inches length, height, width, depth, breadth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher longest, shortest, tallest, highest far, further, furthest, near, close distance apart ... between ... to ... from edge, perimeter, circumference area, covers square centimetre $\left(\mathrm{cm}^{2}\right)$, square metre $\left(\mathrm{m}^{2}\right)$, square millimetre (mm^{2}) ruler metre stick, tape measure

Weight						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales	kilogram, half kilogram weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales	kilogram, half kilogram, gram weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales	kilogram, half kilogram, gram weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales	mass: big, bigger, small, smaller weight: heavy/light, heavier/lighter, heaviest, lightest kilogram, half kilogram, gram weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales	mass: big, bigger, small, smaller weight: heavy/light, heavier/lighter, heaviest, lightest kilogram, half kilogram, gram weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales	mass: big, bigger, small, smaller weight: heavy/light, heavier/lighter, heaviest, lightest tonne, kilogram, half kilogram, gram, pound, ounce weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales

Capacity and Volume						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
full empty half full holds container	litre, half litre capacity volume full empty more than less than half full quarter full holds container	litre, half litre, millilitre capacity volume full empty more than less than half full quarter full holds, contains container	litre, half litre, millilitre capacity volume full empty more than less than half full quarter full holds, contains container	litre, half litre, millilitre capacity volume full empty more than less than half full quarter full holds, contains container, measuring cylinder	litre, half litre, millilitre capacity volume full empty more than less than half full quarter full holds, contains container, measuring cylinder pint, gallon	litre, half litre, millilitre, centilitre cubic centimetres (cm^{2}), cubic metres (m^{3}), cubic millimetres $\left(\mathrm{mm}^{2}\right)$, cubic kilometres $\left(\mathrm{km}^{2}\right)$ capacity volume full empty more than less than half full quarter full holds, contains container, measuring cylinder pint, gallon

Temperature						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		temperature degree		temperature degree centigrade	temperature degree centigrade	temperature degree centigrade

Time						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
time days of the week (Monday, Tuesday...) day, week birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, after next, last now, soon, early, late quick, quicker, quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time hour, o'clock clock, watch, hands	time days of the week, (Monday, Tuesday...) months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, month, year birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, after earlier, later next, first, last midnight date now, soon, early, late quick, quicker, quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time how long ago? how long will it be to ...? how long will it take to ...? how often? always, never, often, sometimes usually	time days of the week, (Monday, Tuesday...) months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, fortnight, month, year birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, after earlier, later next, first, last midnight date now, soon, early, late quick, quicker, quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time how long ago? how long will it be to ...? how long will it take to ...? how often? always, never, often, sometimes usually	time days of the week, (Monday, Tuesday...) months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, fortnight, month, year, century birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, after earlier, later next, first, last midnight calendar, date now, soon, early, late, earliest, latest quick, quicker, quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time how long ago? how long will it be to ...? how long will it take to ...? how often? always, never, often, sometimes	time days of the week, (Monday, Tuesday...) months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, fortnight, month, year, leap year, century, millienium birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, after earlier, later next, first, last noon, midnight calendar, date, date of birth now, soon, early, late, earliest, latest quick, quicker, quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time how long ago? how long will it be to ...? how long will it take to ...? how often? always, never, often, sometimes	time days of the week, (Monday, Tuesday...) months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, fortnight, month, year, leap year, century, millienium birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, after earlier, later next, first, last noon, midnight calendar, date, date of birth now, soon, early, late, earliest, latest quick, quicker, quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time how long ago? how long will it be to ...? how long will it take to ...? how often? always, never, often, sometimes	time days of the week, (Monday, Tuesday...) months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, fortnight, month, year, leap year, century, millienium birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, atter earlier, later next, first, last noon, midnight calendar, date, date of birth now, soon, early, late, earliest, latest quick, quicker, quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time how long ago? how long will it be to ...? how long will it take to ...? how often? always, never, often, sometimes

Money						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
money coin penny, pence, pound price, cost buy, sell spend, spent pay	money coin penny, pence, pound price, cost buy, sell spend, spent pay change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? total	money coin penny, pence, pound price, cost buy, bought, sell, sold spend, spent pay change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? total	money coin penny, pence, pound price, cost buy, bought, sell, sold spend, spent pay change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? total	money coin penny, pence, pound price, cost buy, bought, sell, sold spend, spent pay change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? total	money coin penny, pence, pound price, cost buy, bought, sell, sold spend, spent pay change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? total discount currency	money coin penny, pence, pound price, cost buy, bought, sell, sold spend, spent pay change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? total discount currency profit, loss

Properties of Shape						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
shape, pattern flat curved, straight round hollow, solid sort make, build, draw size bigger, larger, smaller symmetrical pattern, repeating pattern match	shape, pattern flat curved, straight round hollow, solid sort make, build, draw size bigger, larger, smaller symmetry, symmetrical, symmetrical pattern pattern, repeating pattern match	shape, pattern flat curved, straight round hollow, solid sort make, build, draw surface size bigger, larger, smaller symmetry, symmetrical, symmetrical pattern, line symmetry pattern, repeating pattern match	shape, pattern flat curved, straight round hollow, solid sort make, build, draw perimeter surface size bigger, larger, smaller symmetry, symmetrical, symmetrical pattern, line symmetry pattern, repeating pattern match	shape, pattern flat, line curved, straight round hollow, solid sort make, build, construct, draw, sketch perimeter centre surface angle, right-angled base, square-based size bigger, larger, smaller symmetry, symmetrical, symmetrical pattern, line symmetry reflect, reflection pattern, repeating pattern match regular, irregular	shape, pattern flat, line curved, straight round hollow, solid sort make, build, construct, draw, sketch perimeter centre, radius, diameter surface angle, right-angled congruent base, square-based size bigger, larger, smaller symmetry, symmetrical, symmetrical pattern, line symmetry reflect, reflection axis of symmetry, reflective symmetry pattern, repeating pattern match regular, irregular	shape, pattern flat, line curved, straight round hollow, solid sort make, build, construct, draw, sketch perimeter centre, radius, diameter circumference, concentric, arc, net, open, closed surface angle, right-angled congruent intersecting, intersection plane base, square-based size bigger, larger, smaller symmetry, symmetrical, symmetrical pattern, line symmetry reflect, reflection axis of symmetry, reflective symmetry pattern, repeating pattern match regular, irregular

2-D Shape						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
vertex, vertices, edge rectangle (including square) circle triangle	vertex, vertices, edge point, pointed rectangle (including square) circle triangle	```vertex, vertices, edge point, pointed rectangle (including square), rectangular circle, circular triangle, triangular pentagon hexagon octagon```	vertex, vertices, edge point, pointed rectangle (including square), rectangular circle, circular triangle, triangular pentagon, pentagonal hexagon, hexagonal octagon, octagonal quadrilatera! right-angled parallel, perpendicular	2-D, two-dimensional vertex, vertices, edge point, pointed rectangle (including square), rectangular, oblong rectilinear circle, circular triangle, triangular equilateral triangle, isosceles triangle, scalene triangle pentagon, pentagonal hexagon, hexagonal heptagon octagon, octagonal quadrilateral parallelogram, rhombus, trapezium polygon right-angled parallel, perpendicular	2-D, two-dimensional vertex, vertices, edge point, pointed rectangle (including square), rectangular, oblong rectilinear circle, circular triangle, triangular equilateral triangle, isosceles triangle, scalene triangle pentagon, pentagonal hexagon, hexagonal heptagon octagon, octagonal quadrilateral parallelogram, rhombus, trapezium polygon right-angled parallel, perpendicular x-axis, y-axis, quadrant	2-D, two-dimensional vertex, vertices, edge point, pointed rectangle (including square), rectangular, oblong rectilinear circle, circular triangle, triangular equilateral triangle, isosceles triangle, scalene triangle pentagon, pentagonal hexagon, hexagonal heptagon octagon, octagonal quadrilateral parallelogram, rhombus, trapezium, kite polygon right-angled parallel, perpendicular x-axis, y-axis, quadrant

3-D Shape						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
face, edge, vertex, vertices cube pyramid sphere cone	face, edge, vertex, vertices cube, cuboid pyramid sphere cone cylinder	face, edge, vertex, vertices cube, cuboid pyramid sphere cone cylinder	face, edge, vertex, vertices cube, cuboid pyramid sphere, hemisphere cone cylinder prism, triangular prism	3-D, three-dimensional face, edge, vertex, vertices cube, cuboid pyramid sphere, hemisphere, spherical cone cylinder, cylindrical prism, triangular prism tetrahedron, polyhedron	3-D, three-dimensional face, edge, vertex, vertices cube, cuboid pyramid sphere, hemisphere, spherical cone cylinder, cylindrical prism, triangular prism tetrahedron, polyhedron octahedron	3-D, three-dimensional face, edge, vertex, vertices cube, cuboid pyramid sphere, hemisphere, spherical cone cylinder, cylindrical prism, triangular prism tetrahedron, polyhedron octahedron dodecahedron net, open, closed

Position and Direction						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
position over, under above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge corner direction left, right up, down forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from movement slide roll turn stretch, bend	position over, under, underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey left, right up, down forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from movement slide roll	position over, under, underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey, route left, right up, down higher, lower forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from clockwise, anticlockwise movement	position over, under, underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey, route left, right up, down higher, lower forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from clockwise, anticlockwise compass point	position over, under, underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey, route left, right up, down higher, lower forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from clockwise, anticlockwise compass point	position over, under, underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey, route left, right up, down higher, lower forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from clockwise, anticlockwise compass point	position over, under, underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey, route left, right up, down higher, lower forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from clockwise, anticlockwise compass point

whole turn, half turn	turn stretch, bend whole turn, half turn, quarter turn, three-quarter turn	slide roll turn stretch, bend whole turn, half turn, quarter turn, three-quarter turn right angle straight line	north, south, east, west, N, S, E,W horizontal, vertical, diagonal movement slide roll turn stretch, bend whole turn, half turn, quarter turn, three-quarter turn angle ... is a greater/smaller angle than... right angle acute angle obtuse angle straight line	north, south, east, west, N, S, E, W north-east, north-west, south- east, south-west, NE, NW, SE, SW horizontal, vertical, diagonal translate, translation movement slide roll turn stretch, bend whole turn, half turn, quarter turn, three-quarter turn rotate, rotation angle ... is a greater/smaller angle than... degree right angle acute angle obtuse angle reflection straight line ruler, set square angle, measurer, compass	north, south, east, west, N, S, E,W north-east, north-west, southeast, south-west, NE, NW, SE, SW horizontal, vertical, diagonal translate, translation coordinate movement slide roll turn stretch, bend whole turn, half turn, quarter turn, three-quarter turn rotate, rotation angle ... is a greater/smaller angle than... degree right angle acute angle obtuse angle reflection straight line ruler, set square angle, measurer, compass, protractor	north, south, east, west, N, S, E,W north-east, north-west, southeast, south-west, NE, NW, SE, SW horizontal, vertical, diagonal translate, translation coordinate movement slide roll turn stretch, bend whole turn, half turn, quarter turn, three-quarter turn rotate, rotation angle ... is a greater/smaller angle than... degree right angle acute angle obtuse angle reflex angle reflection straight line ruler, set square angle, measurer, compass, protractor

Statistics						
Foundation Stage	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count, sort group, set list	count, sort, vote group, set list, table	count, tally, sort, vote graph, block graph, pictogram represents group, set list, table label, title most popular, most common least popular, least common	count, tally, sort, vote graph, block graph, pictogram represents group, set list, table, chart, bar chart, frequency table carroll diagram, venn diagram label, title, axis, axes diagram most popular, most common least popular, least common	count, tally, sort, vote survey, questionnaire, data graph, block graph, pictogram represents group, set list, table, chart, bar chart, frequency table carroll diagram, venn diagram label, title, axis, axes diagram most popular, most common least popular, least common	count, tally, sort, vote survey, questionnaire, data, database graph, block graph, pictogram represents group, set list, table, chart, bar chart, frequency table, bar line chart carroll diagram, venn diagram line graph label, title, axis, axes diagram most popular, most common least popular, least common maximum/ minimum value outcome	count, tally, sort, vote survey, questionnaire, data, database graph, block graph, pictogram represents group, set list, table, chart, bar chart, frequency table, bar line chart carroll diagram, venn diagram line graph pie chart label, title, axis, axes diagram most popular, most common least popular, least common maximum/ minimum value outcome mean (mode, median, range as estimates for this) statistics, distribution

